【題目】如圖,已知線段,直線相交于點,利用尺規(guī),按下列要求作圖(不寫作法,保留作圖痕跡):

1)在射線,上分別作線段,,使它們分別與線段相等,在射線,上分別作線段,,使它們分別與線段相等;

2)分別連接線段,,,你得到了一個怎樣的圖形?

3)點與點之間的所有連線中,哪條最短?請說明理由.

【答案】1)見解析;(2)四邊形EGFH是菱形;(3GH最短,因為兩點之間線段最短.

【解析】

1)利用圓規(guī)分別在OC,OD上截取OE=OF=a,在OA,OB上分別截取線段OG=OH=b
2)根據(jù)對角線互相垂直且平分的四邊形是菱形可得四邊形EGFH是菱形;
3)根據(jù)兩點之間線段最短可得GH最短.

解:(1)如圖所示:

2)如圖所示:

四邊形EGFH是菱形;

3GH最短,因為兩點之間線段最短.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】武漢某文化旅游公司為了在軍運會期間更好地宣傳武漢,在工廠定制了一批具有濃郁的武漢特色的商品.為了了解市場情況,該公司向市場投放型商品共件進行試銷,型商品成本價/件,商品成本價/件,其中型商品的件數(shù)不大于型的件數(shù),且不小于件,已知型商品的售價為元/件,型商品的售價為元/件,且全部售出.設投放型商品件,該公司銷售這批商品的利潤元.

1)直接寫出之間的函數(shù)關系式:_______;

2)為了使這批商品的利潤最大,該公司應該向市場投放多少件型商品?最大利潤是多少?

3)該公司決定在試銷活動中每售出一件型商品,就從一件型商品的利潤中捐獻慈善資金元,當該公司售完這件商品并捐獻資金后獲得的最大收益為元時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠2,DEBC,ABBC,求證:∠A=∠3.

證明:∵ DEBCABBC(已知)

∴∠DEC=ABC=90°( )

DEAB_________ ___

∴∠2=____ (__________ ___________)

1 (____________ _________)

又∵∠1=∠2(_____________________)

∴∠A=∠3(_____________________)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,,上一點,于點,連結

(1)求證:;

(2)若,試說明四邊形是菱形;

(3)在(2)的條件下,試確定點的位置,使得,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=-x+my=nx+4nn≠0)的交點的橫坐標為-2.則下列結論:①m0,n0;②直線y=nx+4n一定經過點(-40);③mn滿足m=2n-2;④當x-2時,nx+4n-x+m,其中正確結論的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形OA1B1C1,B1A2B2C2B2A3B3C3,的頂點B1,B2B3,x軸上,頂點C1,C2C3,在直線y=kx+b上,若正方形OA1B1C1,B1A2B2C2的對角線OB1=2B1B2=3,則點C3的縱坐標是______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為2cm/s和1cm/s.FQ⊥BC,分別交AC、BC于點P和Q,設運動時間為t(s)(0<t<4).

(1)連結EF、DQ,若四邊形EQDF為平行四邊形,求t的值;

(2)連結EP,設△EPC的面積為ycm2,求y與t的函數(shù)關系式,并求y的最大值;

(3)若△EPQ與△ADC相似,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,直線y=x+1與雙曲線的一個交點為Pm,6).

(1)求k的值;

(2)M(2,a),Nnb)分別是該雙曲線上的兩點,直接寫出當ab時,n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:解分式不等式<0

解:根據(jù)實數(shù)的除法法則:同號兩數(shù)相除得正數(shù),異號兩數(shù)相除得負數(shù),因此,原不等式可轉化為:

或②

解①得:無解,解②得:﹣2<x<1

所以原不等式的解集是﹣2<x<1

請仿照上述方法解下列分式不等式:(1)>0;(2)<0.

查看答案和解析>>

同步練習冊答案