精英家教網 > 初中數學 > 題目詳情

【題目】把一張對面互相平行的紙條折成如圖所示,EF是折痕,若∠EFB=32°,則下列結論不正確的有( ).

A.B.AEC=148°C.BGE=64°D.BFD=116°

【答案】B

【解析】

根據平行線的性質及翻折變換的性質對各選項進行逐一分析即可.

A.AEBG,∠EFB=32°,

∴∠C′EF=EFB=32°,故正確;

B.AEBG,∠EFB=32°,

∴∠AEF=180°-EFB=180°-32°=148°,

∵∠AEF=AEC+GEF,

∴∠AEC148°,故錯誤;

C.∵∠C′EF=32°,

∴∠GEF=C′EF=32°,

∴∠C′EG=C′EF+GEF=32°+32°=64°,

AC′BD′,

∴∠BGE=C′EG=64°,故正確;

D.∵∠BGE=64°,

∴∠CGF=BGE=64°

DFCG,

∴∠BFD=180°-CGF=180°-64°=116°,故正確.

故選B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,EBC上一點,以AE為邊在直線MN的上方作正方形AEFG.

(1)連接GD,求證:△ADG≌△ABE;

(2)連接FC,觀察并猜測∠FCN的度數,并說明理由;

(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數),E是線段BC上一動點(不含端點B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點G恰好落在射線CD上.判斷當點EBC運動時,∠FCN的大小是否總保持不變?若∠FCN的大小不變,請用含a、b的代數式表示tanFCN的值;若∠FCN的大小發(fā)生改變,請舉例說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一項工程,甲、乙兩公司合做,12天可以完成,共需付工費102000元;如果甲、乙兩公司單獨完成此項公程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元。

1)甲、乙公司單獨完成此項工程,各需多少天?

2)若讓一個公司單獨完成這項工程,哪個公司施工費較少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某單位向一所希望小學贈送1080件文具,現用A、B兩種不同的包裝箱進行包裝,已知每個B型包裝箱能裝的文具是A型包裝箱1.5倍,單獨使用B型包裝箱比單獨使用A型包裝箱可少用12個。那么A、B型包裝箱每個分別可以裝多少件文具?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:已知點A、B是反比例函數y=﹣上在第二象限內的分支上的兩個點,點C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__

【答案】

【解析】過點AADy軸于點D,過點BBEy軸于點E,過點AAFBE軸于點F,如圖所示.

∵∠ACB=90°,

∴∠ACD+BCE=90°,

又∵ADy軸,BEy軸,

∴∠ACD+CAD=90°,BCE+CBE=90°,

∴∠ACD=CBE,BCE=CAD

ACDCBE中,由,

ACDCBE(ASA).

設點B的坐標為(m,﹣)(m<0),則E(0,﹣),點D(0,3﹣m),點A(﹣﹣3,3﹣m),

∵點A(﹣﹣3,3﹣m)在反比例函數y=﹣上,

,解得:m=3,m=2(舍去).

∴點A的坐標為(﹣1,6),B的坐標為(﹣3,2),F的坐標為(﹣1,2),

∴BF=2,AF=4,

故答案為:2

點睛

過點AADy軸于點D,過點BBEy軸于點E,過點AAFBE軸于點F,根據角的計算得出ACD=CBEBCE=CAD,由此證出ACDCBE;再設點B的坐標為(m,﹣),由三角形全等找出點A的坐標,將點A的坐標代入到反比例函數解析式中求出m的值,將m的值代入AB點坐標即可得出點A,B的坐標,并結合點A,B的坐標求出點F的坐標,利用勾股定理即可得出結論.

型】填空
束】
18

【題目】二次函數y=x2+2m+1x+m2﹣1)有最小值﹣2,則m=________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是函數上兩點,為一動點,作軸,軸,下列說法正確的是( )

;③若,則平分④若,則

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】每年夏季全國各地總有未成年人因溺水而喪失生命,令人痛心疾首.今年某校為確保學生安全,開展了遠離溺水珍愛生命的防溺水安全知識競賽.現從該校七、八年級中各隨機抽取10名學生的競賽成績(百分制)進行整理、描述和分析(成績得分用x表示,共分成四組:A80≤x85,B85≤x90,C90≤x95D95≤x≤100),下面給出了部分信息:七年級10名學生的競賽成績是:99,80,99,8699,96,90,10089,82;八年級10名學生的競賽成績在C組中的數據是:94,90,94.

七、八年級抽取的學生競賽成績統(tǒng)計表

年級

七年級

八年級

平均數

92

92

中位數

93

b

眾數

c

100

方差

52

50.4

根據以上信息,解答下列問題:

1)直接寫出上述圖表中a,b,c的值;

2)根據以上數據,你認為該校七、八年級中哪個年級學生掌握防溺水安全知識較好?請說明理由(一條理由即可);

3)該校七、八年級共720人參加了此次競賽活動,估計參加此次競賽活動成績優(yōu)秀(x≥90)的學生人數是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,一個點從原點O出發(fā),按向右向上向右向下的順序依次不斷移動,每次移動1個單位,其移動路線如圖所示,第1次移到點A1,第二次移到點A2,第三次移到點A3,,第n次移到點An,則點A2019的坐標是_____________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是拋物線形拱橋,當拱頂離水面2米時,水面寬4米.若水面下降1米,則水面寬度將增加多少米?

查看答案和解析>>

同步練習冊答案