【題目】每年夏季全國(guó)各地總有未成年人因溺水而喪失生命,令人痛心疾首.今年某校為確保學(xué)生安全,開(kāi)展了“遠(yuǎn)離溺水珍愛(ài)生命”的防溺水安全知識(shí)競(jìng)賽.現(xiàn)從該校七、八年級(jí)中各隨機(jī)抽取10名學(xué)生的競(jìng)賽成績(jī)(百分制)進(jìn)行整理、描述和分析(成績(jī)得分用x表示,共分成四組:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面給出了部分信息:七年級(jí)10名學(xué)生的競(jìng)賽成績(jī)是:99,80,99,86,99,96,90,100,89,82;八年級(jí)10名學(xué)生的競(jìng)賽成績(jī)?cè)?/span>C組中的數(shù)據(jù)是:94,90,94.
七、八年級(jí)抽取的學(xué)生競(jìng)賽成績(jī)統(tǒng)計(jì)表
年級(jí) | 七年級(jí) | 八年級(jí) |
平均數(shù) | 92 | 92 |
中位數(shù) | 93 | b |
眾數(shù) | c | 100 |
方差 | 52 | 50.4 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)直接寫出上述圖表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù),你認(rèn)為該校七、八年級(jí)中哪個(gè)年級(jí)學(xué)生掌握防溺水安全知識(shí)較好?請(qǐng)說(shuō)明理由(一條理由即可);
(3)該校七、八年級(jí)共720人參加了此次競(jìng)賽活動(dòng),估計(jì)參加此次競(jìng)賽活動(dòng)成績(jī)優(yōu)秀(x≥90)的學(xué)生人數(shù)是多少?
【答案】(1)40,94,99;(2)八年級(jí)學(xué)生掌握防溺水安全知識(shí)較好,理由:雖然七、八年級(jí)的平均分均為92分,但八年級(jí)的中位數(shù)和眾數(shù)均高于七年級(jí);(3)參加此次競(jìng)賽活動(dòng)成績(jī)優(yōu)秀(x≥90)的學(xué)生人數(shù)是468人
【解析】
(1)根據(jù)中位數(shù)和眾數(shù)的定義可求出b和c的值,根據(jù)扇形統(tǒng)計(jì)圖可求出a的值;
(2)根據(jù)八年級(jí)的中位數(shù)和眾數(shù)均高于七年級(jí)于是得到八年級(jí)學(xué)生掌握防溺水安全知識(shí)較好;
(3)利用樣本估計(jì)總體思想求解可得.
解:(1)a=(1﹣20%﹣10%﹣)×100=40,
∵八年級(jí)10名學(xué)生的競(jìng)賽成績(jī)的中位數(shù)是第5和第6個(gè)數(shù)據(jù)的平均數(shù),
∴b==94;
∵在七年級(jí)10名學(xué)生的競(jìng)賽成績(jī)中99出現(xiàn)的次數(shù)最多,
∴c=99;
(2)八年級(jí)學(xué)生掌握防溺水安全知識(shí)較好,理由:雖然七、八年級(jí)的平均分均為92分,但八年級(jí)的中位數(shù)和眾數(shù)均高于七年級(jí).
(3)參加此次競(jìng)賽活動(dòng)成績(jī)優(yōu)秀(x≥90)的學(xué)生人數(shù)=720×=468人,
答:參加此次競(jìng)賽活動(dòng)成績(jī)優(yōu)秀(x≥90)的學(xué)生人數(shù)是468人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某網(wǎng)絡(luò)公司員工月收人情況表.
月收入(元) | ||||||||
人數(shù) |
(1)求此公司員工月收人的中位數(shù);
(2)小張求出這個(gè)公司員工月收人平均數(shù)為元,若用所求平均數(shù)反映公司全體員工月收人水平,合適嗎?若不合適,用什么數(shù)據(jù)更好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一張對(duì)面互相平行的紙條折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論不正確的有( ).
A.B.∠AEC=148°C.∠BGE=64°D.∠BFD=116°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O, ∠AOM=90°,
(1)如圖1,若OC平分∠AOM.求∠AOD的度數(shù);
(2)如圖2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖∠AED=∠C,∠DEF=∠B,請(qǐng)你說(shuō)明∠1與∠2相等嗎?為什么?
解:因?yàn)椤?/span>AED=∠C(已知)
所以 ∥ ( )
所以∠B+∠BDE=180°( )
因?yàn)椤?/span>DEF=∠B(已知)
所以∠DEF+∠BDE=180°( )
所以 ∥ ( )
所以∠1=∠2( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料并解答問(wèn)題:
七年級(jí)第一學(xué)期課本中有這樣一個(gè)思考題:“你能根據(jù)圖1中的圖形來(lái)說(shuō)明完全平方公式嗎?”說(shuō)明如下:
圖1中的面積可以表示為;圖1中的面積又可以表示為;所以這個(gè)圖形說(shuō)明了完全平方公式除了完全平方公式可以用圖形的面積來(lái)表示,實(shí)際上還有一些代數(shù)恒等式也可以用這種形式表示.
(1)請(qǐng)寫出圖2所表示的代數(shù)恒等式:__________________________________;
(2)請(qǐng)畫一個(gè)圖形,使它的面積能表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中是一副三角板,45°的三角板 Rt△DEF 的直角頂點(diǎn) D 恰好在 30°的三角板 Rt△ABC 斜邊 AB 的中點(diǎn)處,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE 交 AC 于點(diǎn) G,GM⊥AB 于 M.
(1)如圖①,當(dāng) DF 經(jīng)過(guò)點(diǎn) C 時(shí),作 CN⊥AB 于 N,求證:AM=DN;
(2)如圖②,當(dāng) DF∥AC 時(shí),DF 交 BC 于 H,作 HN⊥AB 于 N,(1)的結(jié)論仍然成立,請(qǐng)你說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com