【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點(diǎn),AE與BD相交于點(diǎn)F.若BC=4,∠CBD=30°,則BF的長為( 。
A.B.C.D.
【答案】C
【解析】
先利用含30度角的直角三角形的性質(zhì)求出BD,再利用直角三角形的性質(zhì)求出DE=BE=2,即:∠BDE=∠ABD,進(jìn)而判斷出DE∥AB,再求出AB=3,即可得出結(jié)論.
在Rt△BDC中,BC=4,∠DBC=30°,
∴BD=2,
∵∠BDC=90°,點(diǎn)E是BC中點(diǎn),
∴DE=BE=CE=BC=2,
∵∠DCB=30°,
∴∠BDE=∠DBC=30°,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠BDE,
∴DE∥AB,
∴△DEF∽△BAF,
∴(相似三角形對應(yīng)邊成比例),
在Rt△ABD中,∠ABD=30°,BD=2 ,
∴AB=3,
∴= ,
∴,
∴DF= BD=×2= ,
∴BF=DF=.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“三等分角”大約是在公元前五世紀(jì)由古希臘人提出來的.借助如圖1所示的“三等分角儀”能三等分任一角.其抽象示意圖如圖2所示,由兩根有槽的棒,組成,兩根棒在點(diǎn)相連并可繞轉(zhuǎn)動(dòng).點(diǎn)固定,,點(diǎn),可在槽中滑動(dòng),
(1)求證:.
(2)若,
①求的度數(shù);
②求點(diǎn)到的距離.
(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隨著社會(huì)經(jīng)濟(jì)的發(fā)展,人們的環(huán)境保護(hù)意識(shí)也在逐步增強(qiáng).某社區(qū)設(shè)立了“保護(hù)環(huán)境愛我地球”的宣傳牌.已知立桿AB的高度是3m,從地面上某處D點(diǎn)測得宣傳牌頂端C點(diǎn)和底端B點(diǎn)的仰角分別是62°和45°.求宣傳牌的高度BC的長.(精確到0.1m,參考數(shù)據(jù):sin62°=0.83,cos62°=0.47,tan62°=1.88)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)A、點(diǎn)B在直線的兩側(cè).
(點(diǎn)A到直線的距離小于點(diǎn)B到直線的距離).
如圖, (1)作點(diǎn)B關(guān)于直線的對稱點(diǎn)C; (2)以點(diǎn)C為圓心,的長為半徑作,交于點(diǎn)E; (3)過點(diǎn)A作的切線,交于點(diǎn)F,交直線于點(diǎn)P; (4)連接、. |
根據(jù)以上作圖過程及所作圖形,下列四個(gè)結(jié)論中:
①是的切線; ②平分;
③; ④.
所有正確結(jié)論的序號是___________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,且,.給出如下定義:若平面上存在一點(diǎn)P,使是以線段為斜邊的直角三角形,則稱點(diǎn)P為點(diǎn)A、點(diǎn)B的“直角點(diǎn)”.
(1)已知點(diǎn)A的坐標(biāo)為.
①若點(diǎn)B的坐標(biāo)為,在點(diǎn)、和中,是點(diǎn)A、點(diǎn)B的“直角點(diǎn)”的是_________;
②點(diǎn)B在x軸的正半軸上,且,當(dāng)直線上存在點(diǎn)A、點(diǎn)B的“直角點(diǎn)”時(shí),求b的取值范圍;
(2)的半徑為r,點(diǎn)為點(diǎn)、點(diǎn)的“直角點(diǎn)”,若使得與有交點(diǎn),直接寫出半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五張正面分別寫有數(shù)字:﹣3,﹣2,0,1,2的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.
(1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對值不小于1的概率是 ;
(2)先從中任意抽取一張卡片,以其正面數(shù)字作為m的值,然后再從剩余的卡片中隨機(jī)抽一張,以其正面的數(shù)字作為n的值,請用列表法或畫樹狀圖法,求點(diǎn)Q(m,n)在第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為2的正方形ABCD中,P為AB上的一動(dòng)點(diǎn),E為AD中點(diǎn),PE交CD延長線于Q,過E作EF⊥PQ交BC的延長線于F,則下列結(jié)論:①△APE≌△DQE;②PQ=EF;③當(dāng)P為AB中點(diǎn)時(shí),CF=;④若H為QC的中點(diǎn),當(dāng)P從A移動(dòng)到B時(shí),線段EH掃過的面積為1,其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在頂點(diǎn)為P的拋物線 的對稱軸l上取 ,過A作 交拋物線于B,C兩點(diǎn)(B在C左側(cè)),點(diǎn)和點(diǎn)A關(guān)于點(diǎn)P對稱,過作 ,又分別過B,C作 ,垂足為E,D,在這里我們把點(diǎn)A叫拋物線的焦點(diǎn),BC叫拋物線的直徑,矩形BCDE叫拋物線的焦點(diǎn)矩形.
(1)直接寫出拋物線 的焦點(diǎn)坐標(biāo)及其直徑;
(2)求拋物線 的焦點(diǎn)坐標(biāo)及其直徑;
(3)已知拋物線的直徑為 ,求a的值;
(4)①已知拋物線 的焦點(diǎn)矩形的面積為2,求a的值;
②直接寫出拋物線的焦點(diǎn)矩形與拋物線 有兩個(gè)公共點(diǎn)時(shí)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用A、B兩種機(jī)器人搬運(yùn)大米,A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)20袋大米,A型機(jī)器人搬運(yùn)700袋大米與B型機(jī)器人搬運(yùn)500袋大米所用時(shí)間相等.求A、B型機(jī)器人每小時(shí)分別搬運(yùn)多少袋大米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com