【題目】在Rt△ABC中,∠C=90°,D、E、F分別為AB、BC、AC邊上的中點(diǎn),AC=4cm,BC=6cm,那么四邊形CEDF為 , 它的邊長(zhǎng)分別為

【答案】矩形;2cm,3cm,2cm,3cm
【解析】解:如圖, ∵D、E、F分別為AB、BC、AC邊上的中點(diǎn),且∠C=90°,
∴可得四邊形CEDF是矩形,
∴DE= AC=2cm,
DF= BC=3cm,
∴四邊形CEDF的邊長(zhǎng)分別為DE=2cm,DF=3cm,F(xiàn)C=2cm,CE=3cm.

【考點(diǎn)精析】利用三角形中位線定理和平行四邊形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖等邊△ABC邊長(zhǎng)為1cm,D、E分別是AB、AC上兩點(diǎn),將△ADE沿直線DE折疊,點(diǎn)A落在A’處,A在△ABC外,則陰影部分圖形周長(zhǎng)為(
A.1cm
B.1.5cm
C.2cm
D.3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)B(0,8)為端點(diǎn)的射線BGx軸,點(diǎn)A是射線BG上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A與點(diǎn)B不重合).在射線AG上取AD=OB,作線段AD的垂直平分線,垂足為E,且與x軸交于點(diǎn)F,過點(diǎn)A作ACOA,交射線EF于點(diǎn)C.連接OC、CD,設(shè)點(diǎn)A的橫坐標(biāo)為t.

(1)用含t的式子表示點(diǎn)E的坐標(biāo)為_______;

(2)當(dāng)t為何值時(shí),OCD=180°

(3)當(dāng)點(diǎn)C與點(diǎn)F不重合時(shí),設(shè)OCF的面積為S,求S與t之間的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD,將AMP和BPQ分別沿PM和PQ折疊(AP>AM),點(diǎn)A和點(diǎn)B都與點(diǎn)E重合;再將CQD沿DQ折疊,點(diǎn)C落在線段EQ上點(diǎn)F處.

(1)判斷AMP,BPQ,CQD和FDM中有哪幾對(duì)相似三角形?(不需說(shuō)明理由)

(2)如果AM=1,sinDMF=,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)因式分解:a3﹣2a2+a;
(2)因式分解:(3x+y)2﹣(x﹣3y)2;
(3)解方程: =1﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè),比賽結(jié)束后,隨機(jī)抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.
根據(jù)以上信息解決下列問題:

組別

正確字?jǐn)?shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

20


(1)在統(tǒng)計(jì)表中,m= , n= , 并補(bǔ)全直方圖;
(2)扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是度;
(3)若該校共有964名學(xué)生,如果聽寫正確的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估算這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a+b=3,ab=2,則代數(shù)式a2b+ab2的值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC中,AH⊥BC于H,E,D,F(xiàn)分別是AB,BC,AC的中點(diǎn),則四邊形EDHF是(
A.一般梯形
B.等腰梯形
C.直角梯形
D.直角等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(2a23的結(jié)果是(
A.2a6
B.6a6
C.8a6
D.8a5

查看答案和解析>>

同步練習(xí)冊(cè)答案