【題目】解方程:x2﹣4x+3=0.

【答案】解法一:移項得 x2﹣4x=﹣3,
配方得 x2﹣4x+4=﹣3+4,
∴(x﹣2)2=1,
即 x﹣2=1或x﹣2=﹣1,
∴x1=3,x2=1;
解法二:∵a=1,b=﹣4,c=3,
∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,

∴x1=3,x2=1;
解法三:原方程可化為 (x﹣1)(x﹣3)=0,
∴x﹣1=0或x﹣3=0,
∴x1=1,x2=3.
【解析】此題可以采用配方法:首先將常數(shù)項3移到方程的左邊,然后再在方程兩邊同時加上4,即可達到配方的目的,繼而求得答案;
此題也可采用公式法:注意求根公式為把x= ,解題時首先要找準a,b,c;
此題可以采用因式分解法,利用十字相乘法分解因式即可達到降冪的目的.
【考點精析】關于本題考查的配方法和公式法,需要了解左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題;要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計算方程判別式.判別式值與零比,有無實根便得知.有實根可套公式,沒有實根要告之才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】李大爺一年前買入了A、B兩種兔子共46只.目前,他所養(yǎng)的這兩種兔子數(shù)量相同,且A種兔子的數(shù)量比買入時減少了3只,B種兔子的數(shù)量比買入時減少a只.

(1)則一年前李大爺買入A種兔子________只,目前A、B兩種兔子共________只(用含a的代數(shù)式表示);

(2)若一年前買入的A種兔子數(shù)量多于B種兔子數(shù)量,則目前A、B兩種兔子共有多少只?

(3)李大爺目前準備賣出30只兔子,已知賣A種兔子可獲利15/只,賣B種兔子可獲利6/只.如果賣出的A種兔子少于15只,且總共獲利不低于280元,那么他有哪幾種賣兔方案?哪種方案獲利最大?請求出最大獲利.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成推理填空:如圖在△ABC中,已知∠1+2180°,∠3=∠B,試說明∠AED=∠C

解:∵∠1+2180°( ), +EFD180°(鄰補角定義),

(同角的補角相等)

AB (內(nèi)錯角相等,兩直線平行)

∴∠ADE=∠3

∵∠3=∠B(已知)∴ (等量代換)

BC(同位角相等,兩直線平行)

∴∠AED=∠C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有客房200間供游客居住,當每間客房的定價為每天180元時,客房恰好全部住滿;如果每間客房每天的定價每增加10元,就會減少4間客房出租.設每間客房每天的定價增加x元,賓館出租的客房為y間.求:
(1)y關于x的函數(shù)關系式;
(2)如果某天賓館客房收入38400元,那么這天每間客房的價格是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸相交于點A(﹣2,0)和點B,與y軸相交于點C,頂點D(1,﹣

(1)求拋物線對應的函數(shù)關系式;
(2)求四邊形ACDB的面積;
(3)若平移(1)中的拋物線,使平移后的拋物線與坐標軸僅有兩個交點,請直接寫出一個平移后的拋物線的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠A=∠B=50°,P AB 中點,點 M 為射線 AC 不與點 A 重合的任意一點,連接 MP, 并使MP 的延長線交射線BD 于點N,設∠BPN=α.

(1)求證:△APM≌△BPN;

(2) MN=2BN 時,求α的度數(shù);

(3)BPN 為銳角三角形時,直接寫出α的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(2,0),B(0,4),作△BOC,使△BOC△ABO全等,則點C坐標為_____________.(點C不與點A重合)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c經(jīng)過(1,3),(4,0).
(1)求該拋物線的解析式;
(2)求該拋物線與x軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,CDAB , 垂足為D , AB=c , ∠a=α , 則CD長為( 。
A.csin2α
B.ccos2α
C.csinαtanα
D.csinαcosα

查看答案和解析>>

同步練習冊答案