利用折紙的方法,將一條線段分成四段彼此相等的線段.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

取一張矩形的紙進(jìn)行折疊,具體操作過程如下:
第一步:先把矩形ABCD對折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線折疊得折痕EF,如圖(3)所示;利用展開圖(4)所示.
精英家教網(wǎng)
探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線EF的表達(dá)式為y=kx-k (k<0)
①問:EF與拋物線y=-
1
8
x2
有幾個公共點(diǎn)?
②當(dāng)EF與拋物線只有一個公共點(diǎn)時,設(shè)A′(x,y),求
x
y
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:精編教材全解 數(shù)學(xué) 九年級上冊 (配蘇科版) 蘇科版 題型:044

我們知道了菱形的性質(zhì),那想一想如何利用折紙、剪切的方法,既快又準(zhǔn)確地剪出一個菱形的紙片?下面給出三種方法,

方法一:將一張長方形的紙橫對折,再豎對折,然后沿圖中的虛線剪下,打開即是菱形紙片.

方法二:如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分ABCD就是菱形.

方法三:將一張長方形紙對折,再在折痕上取任意長為底邊,剪一個等腰三角形,然后打開即是菱形(如圖).試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

取一張矩形的紙進(jìn)行折疊,具體操作過程如下:
第一步:先把矩形ABCD對折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線折疊得折痕EF,如圖(3)所示;利用展開圖(4)所示.
作業(yè)寶
探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線EF的表達(dá)式為y=kx-k (k<0)
①問:EF與拋物線y=數(shù)學(xué)公式有幾個公共點(diǎn)?
②當(dāng)EF與拋物線只有一個公共點(diǎn)時,設(shè)A′(x,y),求數(shù)學(xué)公式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省淮安市淮陰中學(xué)高一分班考試數(shù)學(xué)試卷(解析版) 題型:解答題

取一張矩形的紙進(jìn)行折疊,具體操作過程如下:
第一步:先把矩形ABCD對折,折痕為MN,如圖(1)所示;
第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對應(yīng)點(diǎn)為B′,得 Rt△AB′E,如圖(2)所示;
第三步:沿EB′線折疊得折痕EF,如圖(3)所示;利用展開圖(4)所示.

探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線EF的表達(dá)式為y=kx-k (k<0)
①問:EF與拋物線y= 有幾個公共點(diǎn)?
②當(dāng)EF與拋物線只有一個公共點(diǎn)時,設(shè)A′(x,y),求 的值.

查看答案和解析>>

同步練習(xí)冊答案