精英家教網 > 初中數學 > 題目詳情
(2005•吉林)已知兩圓的半徑分別為3cm和5cm,圓心距為9cm,則兩圓的公切線有    條.
【答案】分析:根據圓心距9大于兩圓半徑之和8,則兩圓外離,此時公切線有4條.
解答:解:∵兩圓的半徑分別為3cm和5cm,圓心距為9cm,
3+5<9,
∴兩圓相離,
∴有兩條內公切線和兩條外公切線,共4條.
點評:能夠根據數量關系判斷兩圓的位置關系,理解公切線的概念,進一步判斷公切線的條數.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:044

(2005 吉林)已知一拋物線形大門,其地面寬度AB=18m.一同學站在門內,在離門腳B點1m遠的D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處,根據這些條件,請你求出該大門的高h

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2005•吉林)如圖,已知一拋物線形大門,其地面寬度AB=18m.一同學站在門內,在離門腳B點1m遠的D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處.根據這些條件,請你求出該大門的高h.

查看答案和解析>>

科目:初中數學 來源:2005年吉林省中考數學試卷(課標卷)(解析版) 題型:解答題

(2005•吉林)如圖,已知一拋物線形大門,其地面寬度AB=18m.一同學站在門內,在離門腳B點1m遠的D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處.根據這些條件,請你求出該大門的高h.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《圓》(10)(解析版) 題型:填空題

(2005•吉林)已知兩圓的半徑分別為3cm和5cm,圓心距為9cm,則兩圓的公切線有    條.

查看答案和解析>>

同步練習冊答案