【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,M、N是過點A的一條直線,作 BD⊥MN于點D,CE⊥MN于點E。
(1)求證:DE=BD+CE;
(2)當直線MN繞點A旋轉(zhuǎn)到圖2所示的位置,其他條件不變,則BD與DE、CE的關(guān)系如何?請予以證明
【答案】(1)證明見解析(2)BD=DE+CE
【解析】試題分析:(1)由題中條件可得Rt△ABD≌Rt△CAE,再由線段之間的關(guān)系寫出最終結(jié)論即可;
(2)由HL得出Rt△ABD≌Rt△CAE,進而得出BD=AE,AD=CE,再由線段之間的轉(zhuǎn)化即可得出結(jié)論:BD=DE+CE或DE=BD-CE.
試題解析:
(1)∵BD⊥直線MN,CE⊥直線MN,
∴∠BDA=∠AEC=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
∴△ADB≌△CEA
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)關(guān)系:BD=DE+CE
證明如下:
∵BD⊥直線MN,CE⊥直線MN,
∴∠BDA=∠AEC=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
∴△ADB≌△CEA
∴AE=BD,AD=CE,
∴BD=AE=DE+AD=DE+CE.
科目:初中數(shù)學 來源: 題型:
【題目】為了參加中考體育測試,甲,乙,丙三位同學進行足球傳球訓練,球從一個人腳下隨機傳到另一個人腳下,且每位傳球人傳球給其余兩人的機會是均等的,由甲開始傳球,共傳三次.
(l)求請用樹狀圖列舉出三次傳球的所有可能情況:
(2)傳球三次后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=CD=6cm,BC=10cm,點P從點B出發(fā),以2cm/秒的速度沿BC向點C運動,設(shè)點P的運動時間為t秒:
(1)PC=______cm.(用t的代數(shù)式表示)
(2)當t為何值時,△ABP≌△DCP?
(3)當點P從點B開始運動,同時,點Q從點C出發(fā),以v cm/秒的速度沿CD向點D運動,是否存在這樣v的值,使得△ABP與△PQC全等?若存在,請求出v的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知點 A(a+b,2-a)與點B(a-5,b-2a)關(guān)于y軸對稱.
(1)求A、B兩點的坐標;
(2)如果點B關(guān)于x軸的對稱點是C,在圖中標出點A、B、C,并求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】到三角形三頂點距離相等的點是( ),到三角形三邊距離相等的點是( )
A. 三條角平分線的交點,三條垂直平分線的交點
B. 三條角平分線的交點,三條中線的交點
C. 三條垂直平分線的交點,三條中線的交點
D. 三條垂直平分線的交點,三條角平分線的交點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)2014年12月28日“青煙威榮”城際鐵路正式開通,從煙臺到北京的高鐵里程比普快里程縮短了81千米,運行時間減少了9小時,已知煙臺到北京的普快列車里程月1026千米,高鐵平均時速是普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)某日王老師要去距離煙臺大約630千米的某市參加14:00召開的會議,如果他買到
當日8:40從煙臺到該是的高鐵票,而且從該市火車站到會議地點最多需要1.5小時.試問在高鐵列車準點到達的情況下他能在開會之前趕到嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com