【題目】已知:如圖,一次函數(shù) 與反比例函數(shù) 的圖象在第一象限的交點(diǎn)為A(1,n).

(1)求m與n的值;
(2)設(shè)一次函數(shù)的圖象與x軸交于點(diǎn)B,連結(jié)OA,求∠BAO的度數(shù).

【答案】
(1)解:∵點(diǎn)A(1,n)在雙曲線 上,

∴n= ,

又∵A(1, )在直線y= x+m上,

∴m=


(2)解:過點(diǎn)A作AM⊥x軸于點(diǎn)M.

∵直線 與x軸交于點(diǎn)B,

解得 x=﹣2.

∴點(diǎn)B的坐標(biāo)為(﹣2,0).

∴OB=2,

∵點(diǎn)A的坐標(biāo)為 ,

∴AM= ,OM=1,

在Rt△AOM中,∠AMO=90°,

∴tan ,

∴∠AOM=60°,

由勾股定理,得 OA=2,

∴OA=OB,

∴∠OBA=∠BAO,

∴∠BAO= AOM=30°,

∴sin∠BAO=

∴∠BA0=30°.


【解析】(1)把點(diǎn)A(1,n)坐標(biāo)代入 即可求得n,再把 坐標(biāo)代入 可求m;(2)由直線 ,求得點(diǎn)B的坐標(biāo)為(﹣2,0),即OB=2,由點(diǎn)A的坐標(biāo)為 ,由三角函數(shù)可求得∠AOM=60°,由勾股定理求得得 OA=2,得到OA=OB,推出∠OBA=∠BAO,于是求得∠BAO=30°,由正弦函數(shù)的定義可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ABCDAD=BC , 點(diǎn)E在邊AD上,BEAC相交于點(diǎn)O , 且∠ABE=∠BCA

(1)求證:△BAE∽△BOA.
(2)求證:BOBE=BCAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格圖中有兩個(gè)格點(diǎn)A、B.(注:網(wǎng)格線交點(diǎn)稱為格點(diǎn))

(1)請(qǐng)直接寫出AB的長(zhǎng):   ;

(2)請(qǐng)?jiān)趫D中確定格點(diǎn)C,使得△ABC的面積為12.如果符合題意的格點(diǎn)C不止一個(gè),請(qǐng)分別用C1、C2、C3表示;

(3)請(qǐng)用無刻度的直尺在圖中以AB為一邊畫一個(gè)面積為18的長(zhǎng)方形ABMN.(不要求寫畫法,但要保留畫圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(2,0),以OA為一邊在第四象限內(nèi)畫正方形OABC,D(m,0)為x軸上的一個(gè)動(dòng)點(diǎn)(m>2),以BD為一直角邊在第四象限內(nèi)畫等腰直角△BDE,其中∠DBE=90°.

(1)試判斷線段AE、CD的數(shù)量關(guān)系,并說明理由;

(2)設(shè)DE的中點(diǎn)為F,直線AFy軸于點(diǎn)G.問:隨著點(diǎn)D的運(yùn)動(dòng),點(diǎn)G的位置是否會(huì)發(fā)生變化?若保持不變,請(qǐng)求出點(diǎn)G的坐標(biāo);若發(fā)生變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,∠A=30°,以B為圓心,BC長(zhǎng)為半徑畫弧,分別交AC,AB于D,E兩點(diǎn),并連結(jié)BD,DE. 則∠BDE的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,E為平面內(nèi)任意一點(diǎn),連結(jié)DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到DG,連結(jié)EC,AG.

(1)當(dāng)點(diǎn)E在正方形ABCD內(nèi)部時(shí),
①依題意補(bǔ)全圖形;
②判斷AG與CE的數(shù)量關(guān)系與位置關(guān)系并寫出證明思路.
(2)當(dāng)點(diǎn)B,D,G在一條直線時(shí),若AD=4,DG= ,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)H在⊙O上,E是 的中點(diǎn),過點(diǎn)E作EC⊥AH,交AH的延長(zhǎng)線于點(diǎn)C.連接AE,過點(diǎn)E作EF⊥AB于點(diǎn)F.

(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】CPI指居民消費(fèi)價(jià)格指數(shù),反映居民家庭購買消費(fèi)商品及服務(wù)的價(jià)格水平的變動(dòng)情況.CPI的漲跌率在一定程度受到季節(jié)性因素和天氣因素的影響.根據(jù)北京市2015年與2016年CPI漲跌率的統(tǒng)計(jì)圖中的信息,請(qǐng)判斷2015年1~8月份與2016年1~8月份,同月份比較CPI漲跌率下降最多的月份是月;請(qǐng)根據(jù)圖中提供的信息,預(yù)估北京市2016年第四季度CPI漲跌率變化趨勢(shì)是 , 你的預(yù)估理由是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.
(1)直接寫出甲投放的垃圾恰好是A類的概率;
(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案