【題目】如圖,在平面直角坐標系中,長方形MNPO的邊OMx軸上,邊OPy軸上,點N的坐標為(3,9),將矩形沿對角線PM翻折,N點落在F點的位置,且FMy軸于點E,那么點F的坐標為_____

【答案】(﹣,

【解析】

FHOPH,F(xiàn)Gx軸于G.首先證明PFE≌△MOE,推出OE=FE,OM=PF=3,設OE=x,那么PE=9x,DE=x,在RtPFE中,PE2=FE2+PF2,構建方程求出x即可解決問題.

如圖,作FHOPH,F(xiàn)Gx軸于G,

∵點N的坐標為(3,9),

MO=3,MN=9,

根據(jù)折疊可知:PF=OM,

而∠PFE=MOE=90°,FEP=MEO,

∴△PFE≌△MOE,

OE=FE,OM=PF=3,

OE=x,那么PE=9x,DE=x,

∴在RtPFE中,PE2=FE2+PF2,

(9x)2=x2+32,

x=4,

EF=4,PE=5,

FH=

HE=,

FG=HO=4+

F(,),

故答案為(,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=2,動點DB開始沿BC向點C運動,到達點C后停止運動,將△ABD繞點A旋轉后得到△ACE,則下列說法中,正確的是( 。

①DE的最小值為1;②ADCE的面積是不變的;在整個運動過程中,點E運動的路程為2;④在整個運動過程中,△ADE的周長先變小后變大.

A. ①③④ B. ①②③ C. ②③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.

(1)求該拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,則∠AFB=_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù) 的圖象經過第二象限內的點A(﹣1,m),AB⊥x軸于點B,△AOB的面積為2.若直線y=ax+b經過點A,并且經過反比例函數(shù) 的圖象上另一點C(n,一2).

(1)求直線y=ax+b的解析式;
(2)設直線y=ax+b與x軸交于點M,求AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把沿對折,疊合后的圖形如圖所示.若,,則∠2的度數(shù)為(

A. 24° B. 35° C. 30° D. 25°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系內,直線與兩坐標軸交于兩點,點為坐標原點,若在該坐標平面內有以點(不與點、重合)為頂點的直角三角形與全等,且這個以點為頂點的直角三角形與有一條公共邊,則所有符合條件的點個數(shù)為(

A. 9 B. 7 C. 5 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合),以AD為邊在AD的右側作正方形ADEF,連接CF.

(1)觀察猜想:如圖(1),當點D在線段BC上時,

①BC與CF的位置關系是:   ;

②BC、CD、CF之間的數(shù)量關系為:   (將結論直接寫在橫線上)

(2)數(shù)學思考:如圖(2),當點D在線段CB的延長線上時,上述①、②中的結論是否仍然成立?若成立,請給予證明,若不成立,請你寫出正確結論再給予證明.

查看答案和解析>>

同步練習冊答案