【題目】如圖,在平行四邊形ABCD中,E,F(xiàn),G,H分別是邊AB,DC,BC,AD上的點,且AE=CF,BG=DH.求證:EF與GH互相平分.
【答案】見解析
【解析】
首先連接EH,F(xiàn)G,F(xiàn)H,GE,由在平行四邊形ABCD中,E,F(xiàn),G,H分別是邊AB,DC,BC,AD上的點,且AE=CF,BG=DH,易證得△AEH≌△CFG,即可得FG=EH,繼而可得HF=EG,即可證得四邊形EGFH為平行四邊形,繼而證得EF與GH互相平分。
證明:連接EH,F(xiàn)G,F(xiàn)H,GE,
∵四邊形ABCD是平行四邊形,
∴∠A=∠C,∠B=∠D,AB=CD,AD=BC,
∵AE=CF,BG=DH,
∴AH=CG,BE=DF,
在△AEH和△CFG中,
AE=CF
∠A=∠C
AH=CG
∴△AEH≌△CGF(SAS),
∴EH=GF,
同理:EG=HF,
∴四邊形EGFH為平行四邊形,
∴EF與GH互相平分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AD是高,E、F分別是AB、AC的中點,
(1)AB=10,AC=8,求四邊形AEDF的周長;
(2)EF與AD有怎樣的位置關(guān)系,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由8個大小相同的小正方體組合成的簡單幾何體.
(1)該幾何體的主視圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖;(邊框線加粗畫出,并涂上陰影)
(2)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和主視圖不變,那么請在下列網(wǎng)格圖中畫出添加小正方體后所得幾何體所有可能的左視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l上有A、B兩點,點O是線段AB上的一點,且OA=10cm,OB=5cm.
(1)若點C是線段 AB 的中點,求線段CO的長.
(2)若動點 P、Q 分別從 A、B 同時出發(fā),向右運(yùn)動,點P的速度為4cm/s,點Q的速度為3cm/s,設(shè)運(yùn)動時間為 x 秒,
①當(dāng) x=__________秒時,PQ=1cm;
②若點M從點O以7cm/s的速度與P、Q兩點同時向右運(yùn)動,是否存在常數(shù)m,使得4PM+3OQ﹣mOM為定值,若存在請求出m值以及這個定值;若不存在,請說明理由.
(3)若有兩條射線 OC、OD 均從射線OA同時繞點O順時針方向旋轉(zhuǎn),OC旋轉(zhuǎn)的速度為6度/秒,OD 旋轉(zhuǎn)的速度為2度/秒.當(dāng)OC與OD第一次重合時,OC、OD 同時停止旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時間為t秒,當(dāng)t為何值時,射線 OC⊥OD?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上線段的長度可以用線段端點表示的數(shù)進(jìn)行減法運(yùn)算得到,例如:如圖①,若點A,B在數(shù)軸上分別對應(yīng)的數(shù)為a,b(a<b),則AB的長度可以表示為AB=b-a.
請你用以上知識解決問題:
如圖②,一個點從數(shù)軸上的原點開始,先向左移動2個單位長度到達(dá)A點,再向右移動3個單位長度到達(dá)B點,然后向右移動5個單位長度到達(dá)C點.
(1)請你在圖②的數(shù)軸上表示出A,B,C三點的位置.
(2)若點A以每秒1個單位長度的速度向左移動,同時,點B和點C分別以每秒2個單位長度和3個單位長度的速度向右移動,設(shè)移動時間為t秒.
①當(dāng)t=2時,求AB和AC的長度;
②試探究:在移動過程中,3AC-4AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是AB的中點,E是AC上一點,EF∥AB,DF∥BE。
(1)猜想DF與AE的關(guān)系;
(2)證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在育民中學(xué)舉辦的“藝術(shù)節(jié)”活動中,八·二班學(xué)生成績十分突出,小剛將全班獲獎作品情況繪成如圖的條形統(tǒng)計圖(成績?yōu)?/span>60分以上的都是獲獎作品)
(1)請根據(jù)圖表計算出八·二班學(xué)生有多少件作品獲獎?
(2)用計算器求出八·二班獲獎作品的平均成績.
(3)求出這次活動中獲獎作品成績的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、O、B在一條直線上,OF是∠AOE的平分線,OD是∠BOE的平分線.若∠DOB=28°,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知3x2-5x+1=0,求下列各式的值:①3x+;②9x2+;
(2)若3xm+1-2xn-1+xn是關(guān)于x的二次多項式,試求3(m-n)2-4(n-m)2-(m-n)3+2(n-m)3的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com