如圖,拋物線y=-
1
3
x2+
2
3
mx+n(其中m,n為常數(shù)且m>n)與y軸正半軸交于A點,它的對稱軸交x軸正半軸于C點,拋物線的頂點為P,Rt△ABC的直角頂點B在對稱軸上,當(dāng)它繞點C按順時針方向旋轉(zhuǎn)90°得到Rt△A′B′C.
(1)寫出點A,P,A′的坐標(biāo)(用含m,n的式子表示);
(2)若直線BB'交y軸于E點,求證:線段B′E與AA′互相平分;
(3)若點A′在拋物線上且Rt△ABC的面積為1時,請求出拋物線的解析式并判斷在拋物線的對稱軸上是否存在點D,使△AA′D為等腰三角形?若存在,請直接寫出所有符合條件的D點坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)
分析:(1)根據(jù)拋物線的解析式易得出A點和P點的坐標(biāo).根據(jù)旋轉(zhuǎn)的性質(zhì)可看得出AB=A′B′,BC=B′C,因此A′的橫坐標(biāo)為P點的橫坐標(biāo)與A點橫坐標(biāo)的和,而A′的縱坐標(biāo)與P點的橫坐標(biāo)相等,由此可得出A′的坐標(biāo).
(2)在直角三角形BCB′中,BC=B′C,因此三角形BCB′是等腰直角三角形,即∠EBA=∠BB′C=45°,可得出EA=AB=A′B′,這樣就證得了四邊形AEA′B′是平行四邊形,那么根據(jù)平行四邊形的性質(zhì)即可得出所證的條件.
(3)①根據(jù)A′在拋物線上,將A′的坐標(biāo)代入拋物線的解析式中可得出一個關(guān)于m,n的等量關(guān)系.已知了三角形ABC的面積為1,可得出另一個關(guān)于m、n的等量關(guān)系,聯(lián)立兩式即可求出m、n的值,也就求出了A、A′的坐標(biāo).
②本題可分三種情況:
一:AD=A′D;二:AD=AA′;三:AA′=A′D;
可根據(jù)對稱軸方程設(shè)出D點坐標(biāo),然后根據(jù)坐標(biāo)系中兩點間的距離公式來列等量關(guān)系進(jìn)而可求出D的坐標(biāo).
解答:(1)解:令x=0,得到y(tǒng)=n,
∴A(0,n),且m>n>0
∵y=-
1
3
x2+
2
3
mx+n=-
1
3
(x-m)2+
1
3
m2+n,
∴P(m,
1
3
m2+n).
根據(jù)題意得,∠ABC=∠AOC=∠OCB=90°,
∴四邊形ABCO是矩形.
∴BC=AO=B′C=n,AB=A′B′=OC=m.
∴A′點坐標(biāo)為(m+n,m).

(2)證明:連接EA′,AB′.
∵BC=B′C,∠BCB′=90°,
∴∠EB′O=45°.
∵∠EOB′=90°,
∴∠OEB′=45°,
∴OB′=OE=m+n.
∵AO=n,
∴EA=m,∵A′B′=m,
∴A′B′=EA(5分)
∵∠A′B′C=90°,
∴EA∥A′B′.
∴四邊形AEA′B′是平行四邊形.
∴對角線B′E與AA′互相平分.

(3)解:∵點A′(m+n,m)在拋物線上,
∴m=-
1
3
(m+n)2+
2
3
(m+n)m+n.
整理得:m-n=
1
3
(m+n)(m-n)
∵m>n,即m-n≠0.
∴m+n=3,即n=3-m.
1
2
AB•BC=1,即
1
2
mn=1.
把n=3-m代入
1
2
m•n=1
得,
1
2
m(3-m)=1.
解得
m=2
n=1
m=1
n=2
(不合題意舍去)
∴拋物線解析式為y=-
1
3
x2+
4
3
x+1.
∴A'(3,2),A(0,1).
結(jié)論:在拋物線的對稱軸上存在點D,使△AA′D為等腰三角形.
點D的坐標(biāo)為:D1(2,1+
6
),D2(2,1-
6
),D3(2,5),D4(2,-1),D5(2,0).
點評:本題為二次函數(shù)綜合題,考查了圖形的旋轉(zhuǎn)變換、平行四邊形的判定和性質(zhì)、等腰三角形的判定等知識點,綜合性強(qiáng),能力要求較高.考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對稱;拋物線C1,C3關(guān)于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點;與y相交于E、F兩點;H、G、M分別為拋物線C1,C2,C3的頂點.HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個點中,四個點可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點A(-2,0),點B(4,0),交y軸于點C(0,4).
(1)求拋物線的解析式,并寫出頂點D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點,交拋物線的對稱軸于點E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點,過P作PF∥ED交直線MN上方的拋物線于點F.問:在直線MN上是否存在點P,使得以P,E,D,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請求出點P及相應(yīng)的點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線的頂點坐標(biāo)為M(1,4),與x軸的一個交點是A(-1,0),與y軸交于點B,直線x=1交x軸于點N.
(1)求拋物線的解析式及點B的坐標(biāo);
(2)求經(jīng)過B、M兩點的直線的解析式,并求出此直線與x軸的交點C的坐標(biāo);
(3)若點P在拋物線的對稱軸x=1上運動,請你探索:在x軸上方是否存在這樣的P點,使精英家教網(wǎng)以P為圓心的圓經(jīng)過點A,并且與直線BM相切?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)精英家教網(wǎng).點C是點A關(guān)于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊答案