【題目】已知:如圖,梯形ABCD中,ADBC,B=90°,AD=AB=4,BC=7,點(diǎn)EBC邊上,將CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)C'處.

(1)求∠C'DE的度數(shù);

(2)求C'DE的面積.

【答案】(1)45°;(2)

【解析】

(1)首先作DF⊥BCF,根據(jù)已知證出△AC′D≌△FCD,再求出∠C′DE=∠CDE,即可得出答案;(2)根據(jù)EC=x,則BE=7-x,C′E=x,再根據(jù)勾股定理求出EC的長(zhǎng),即可求出△C′DE的面積.

(1)過(guò)點(diǎn)DDFBCF

ADBCB=90°,AD=AB,

∴四邊形ABFD是正方形.

DF=BF=AB=4,FC=3,

RtDFC中,

,

CD=5,

AD=FDA=DFC=90°,CD=CD

∴△ACD≌△FCD,

∴∠ADC′=FDCAC′=FC=3,

∴∠ADF=ADC′+CDF=FDC+CDF=CDC=90°,

∵∠CDE=CDE,

∴∠CDE=45°;

(2)設(shè)EC=x,則BE=7-x,CE=x,

AC′=3,

BC'=1,

RtBEC中(7-x2+1=x2

解方程,得:,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有五個(gè)邊長(zhǎng)為1的小正方形組成的圖形紙,我們可以把它剪開(kāi)拼成一個(gè)正方形。

(1)拼成的大正方形的面積與邊長(zhǎng)分別是多少?

(2)你能在下圖3×3方格中,連接四個(gè)格點(diǎn),組成面積為5的正方形嗎?

(3)能把十個(gè)小正方形組成的圖形紙,剪開(kāi)并拼成更大的正方形嗎?若能,請(qǐng)在下圖中畫(huà)出圖形,并求出它的邊長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=4.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上.若四邊形EGFH是菱形,則AE的長(zhǎng)是
( 。

A.
B.
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年6月某日自治區(qū)部分市、縣的最高氣溫(℃)如下表:

區(qū)縣

吐魯番

塔城

和田

伊寧

庫(kù)爾勒

阿克蘇

昌吉

呼圖壁

鄯善

哈密

氣溫(℃)

33

32

32

30

30

29

29

31

30

28

則這10個(gè)市、縣該日最高氣溫的眾數(shù)和中位數(shù)分別是(
A.32,32
B.32,30
C.30,30
D.30,32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)學(xué)實(shí)習(xí)小組在高300米的山腰(即PH=300米)P處進(jìn)行測(cè)量,測(cè)得對(duì)面山坡上A處的俯角為30°,對(duì)面山腳B處的俯角60°,已知tan∠ABC= ,點(diǎn)P,H,B,C,A在同一個(gè)平面上,點(diǎn)H,B,C在同一條直線上,且PH⊥BC,則A,B兩點(diǎn)間的距離為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初中生在數(shù)學(xué)運(yùn)算中使用計(jì)算器的現(xiàn)象越來(lái)越普遍,某校一興趣小組隨機(jī)抽查了本校若干名學(xué)生使用計(jì)算器的情況.以下是根據(jù)抽查結(jié)果繪制出的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:
請(qǐng)根據(jù)上述統(tǒng)計(jì)圖提供的信息,完成下列問(wèn)題:
(1)這次抽查的樣本容量是;
(2)請(qǐng)補(bǔ)全上述條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)若從這次接受調(diào)查的學(xué)生中,隨機(jī)抽查一名學(xué)生恰好是“不常用”計(jì)算器的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,對(duì)角線ACBC相交于O , EAB的中點(diǎn),FDE的中點(diǎn),GCF的中點(diǎn), OHDEH , 過(guò)AAIDEI , 交BDJ , 交BCK , 連接BI

下列結(jié)論:①GAC的距離等于 ;②OH ;③BK AK;④∠BIJ=45°.其中正確的結(jié)論是
A.①②③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,Rt△ABC中,∠C=90°,AC=6,BC=8,以B為圓心,半徑為3的⊙O沿BC方向以每秒1個(gè)單位的速度平移,當(dāng)⊙O運(yùn)動(dòng)到與直線相交于點(diǎn)C時(shí)(點(diǎn)OBC上),⊙O停止運(yùn)動(dòng).

(1) (2) (3)
(1)當(dāng)運(yùn)動(dòng)停止時(shí),試判斷直線AB與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)在平移過(guò)程中,若⊙O與AB相切于點(diǎn)D,連接CD , 求△ACD的面積;
(3)在平移過(guò)程中,若⊙O經(jīng)過(guò)AB的中點(diǎn)G時(shí), E、FOC上的兩個(gè)動(dòng)點(diǎn),且EF=1.6,當(dāng)四邊形AGEF的周長(zhǎng)最小時(shí),試求OE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(a,1)、B(﹣1,b)都在雙曲線y=﹣ 上,點(diǎn)P、Q分別是x軸、y軸上的動(dòng)點(diǎn),當(dāng)四邊形PABQ的周長(zhǎng)取最小值時(shí),PQ所在直線的解析式是( )

A.y=x
B.y=x+1
C.y=x+2
D.y=x+3

查看答案和解析>>

同步練習(xí)冊(cè)答案