【題目】如圖,AB是⊙O的直徑,點E為線段OB上一點(不與O,B重合),作ECOB,交⊙O于點C,作直徑CD,過點C的切線交DB的延長線于點P,作AFPC于點F,連接CB.

(1)求證:AC平分∠FAB;

(2)求證:BC2=CECP;

(3)當AB=4=時,求劣弧的長度.

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】1)根據(jù)已知先證明∠ACF=ACE,再根據(jù)等角的余角相等即可證得;

(2)只要證明CBE∽△CPB,可得即可解決問題;

(3)作BMPFM,CE=CM=CF,設CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性質(zhì)求出BM,求出tanBCM的值即可解決問題;

1)AB是直徑,

∴∠ACB=90°,

∴∠BCP+ACF=90°,ACE+BCE=90°,

∵∠BCP=BCE,

∴∠ACF=ACE,

∵∠AFC=90°,AEC=90°,

∴∠FAC=EAC,

AC平分∠FAB;

(2)OC=OB,

∴∠OCB=OBC,

PF是⊙O的切線,CEAB,

∴∠OCP=CEB=90°,

∴∠PCB+OCB=90°,BCE+OBC=90°,

∴∠BCE=BCP,

CD是直徑,

∴∠CBD=CBP=90°,

∴△CBE∽△CPB,

BC2=CECP;

(3)如圖,作BMPFM.則CE=CM=CF,

CE=CM=CF=3a,PC=4a,PM=a,

∵∠MCB+P=90°,P+PBM=90°,

∴∠MCB=PBM,

CD是直徑,BMPC,

∴∠CMB=BMP=90°,

∴△BMC∽△PMB,

,

BM2=CMPM=3a2,

BM=a,

tanBCM=,

∴∠BCM=30°,

∴∠OCB=OBC=BOC=60°,BOD=120°,

的長=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點,點EBC邊上,且BE=BD,連接AEDE、DC。

1)求證:△ABE≌△CBD;

2)若∠CAE=30°,求∠BCD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平面直角坐標系中,A點坐標為(0,1),ABBC,∠ABC90°CDx軸.

1)填空:B點坐標為   ,C點坐標為   

2)若點P是直線CD上第一象限上一點且△PAB的面積為6.5,求P點的坐標;

3)在(2)的條件下點Mx軸上線段OD之間的一動點,當△PAM為等腰三角形時,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過點A2m).

(1)求反比例函數(shù)的解析式;

(2)B軸的上,且OA=BA,反比例函數(shù)圖像上有一點C,且∠ABC=90°,求點C坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,A=36°AB的垂直平分線MDAC于點D,ABM,以下結(jié)論:①△BCD是等腰三角形;②射線BDACB的角平分線;③△BCD的周長CBCD=AC+BC;④△ADMBCD.正確的有(

A.①②③B.①②C.①③D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳館推出了兩種收費方式.

方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內(nèi)使用,憑卡游泳,每次游泳再付費30元.

方式二:顧客不購買會員卡,每次游泳付費40元.

設小亮在一年內(nèi)來此游泳館的次數(shù)為x次,選擇方式一的總費用為y1(元),選擇方式二的總費用為y2(元).

1)請分別寫出y1y2x之間的函數(shù)表達式.

2)若小亮一年內(nèi)來此游泳館的次數(shù)為15次,選擇哪種方式比較劃算?

3)若小亮計劃拿出1400元用于在此游泳館游泳,采用哪種付費方式更劃算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,圖①是一個三角形,分別連接三邊中點得圖②,再分別連接圖②中的小三角形三邊中點,得圖③……按此方法繼續(xù)下去.

在第個圖形中有______個三角形(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.

(1)求一次函數(shù)y=kx+b的關系式;

(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

同步練習冊答案