分析 (1)利用同角的余角相等可得∠BAD=∠EAF,由此得∠OAD=∠BAE,根據(jù)SAS證明△OAD≌△BAE;
(2)作輔助線構(gòu)建正方形ANDM和等腰直角三角形CFD,把所求CD轉(zhuǎn)化為CF,證CF=OM,由(1)中的全等可知∠ODA=∠BEA=45°,證明∠ODC=45°,推出CF與CD的關(guān)系,利用直角三角形斜邊中線和正方形的性質(zhì)求出BE-$\frac{1}{2}$DE的值為OM,得出結(jié)論;
(3)作輔助線構(gòu)建正方形BMKN和全等三角形,首先利用全等證明CG=QG,由線段垂直平分線性質(zhì)得KC=KQ,證明Rt△CNK≌Rt△QMK,得∠CKN=∠QKM,可知∠CKQ=90°,得△KCQ是等腰直角三角形,因此得出結(jié)論:∠KCG的大小不變,等于45°.
解答 證明:(1)如圖1,在正方形ABCO中,
∵∠BAF=∠DAE=90°,
∴∠BAD=∠EAF,
∴∠BAD+∠OAB=∠EAF+∠BAF,
即∠OAD=∠BAE,
∵AB=AO,AD=AE,
∴△OAD≌△BAE;
(2)如圖2,設(shè)CD與AB的交點為P,
過C作CF⊥OD于F,過A作AN⊥DE于N,AM⊥OD于M,
∵等腰Rt△ADE,AD=AE,
∴AN=DN=$\frac{1}{2}$DE,
∴四邊形ANDM是正方形,
∴DN=DM,
∴BE-$\frac{1}{2}$DE=OD-DM=OM,
由①△OAD≌△BAE得,∠ODA=∠BEA=45°,
∴∠ODE=90°,
∵∠OAB=∠ODB=90°,∠OPA=∠BPD,
∴△OAP∽△BDP,
∴$\frac{OA}{AP}=\frac{BD}{PD}$,
∴$\frac{BC}{AP}=\frac{BD}{PD}$,
∵∠CBD=90°+∠ABE,∠APD=90°+∠AOD,
∠ABE=∠AOD,
∴∠CBD=∠APD,
∴△CBD∽△APD,
∴∠CDB=∠ADO=45°,
∴∠ODC=90°-45°=45°,
∵sin45°=$\frac{CF}{CD}$,
∴CF=$\frac{\sqrt{2}CD}{2}$,
∵△COF≌△OAM,
∴CF=OM,
∴BE-$\frac{1}{2}$DE=$\frac{\sqrt{2}}{2}$CD;
(3)如圖3,∠KCG的大小不變,理由是:
過K作KM⊥AB于M,KN⊥BC,交CB的延長線于N,延長CG、BA交于Q,連接KQ,
∵∠N=∠MBN=∠BMK=90°,
∴四邊形BMKN是矩形,
∵AB=AE,∠BAE=90°,
∴∠ABE=45°,
∴BM=KM,
∴矩形BMKN是正方形,
∵OC∥AB,
∴∠OCG=∠GQA,
∵FG=AG,∠CGF=∠AGQ,
∴△FCG≌△AQG,
∴CG=QG,
∵CG⊥GK,
∴KC=KQ,
∵KN=KM,
∴Rt△CNK≌Rt△QMK,
∴∠CKN=∠QKM,
∴∠CKQ=∠CKM+∠MKQ=∠CKM+∠CKN=90°,
∴△KCQ是等腰直角三角形,
∴∠KCG=∠KQC=45°.
點評 本題是四邊形的綜合題,考查了正方形、等腰直角三角形、全等三角形的性質(zhì)和判定;要注意以下兩個問題:①對于第二問中的結(jié)論:和或差的形式,這是一個證明中的難點,要針對結(jié)論中出現(xiàn)的線段找對應(yīng)的相等或倍數(shù)關(guān)系做替換,想辦法把這些線段放在同一個三角形中或同一組相似或全等的圖形中找關(guān)系,進(jìn)行證明;②第三問中的角確定其定值還是范圍,從這一角所在的三角形入手,找所有邊存在的關(guān)系進(jìn)行證明,得出結(jié)論.
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年江西省下期九年級第一次月考數(shù)學(xué)試卷(解析版) 題型:判斷題
如圖,AB是半圓O的直徑,AC,BC是半圓O的弦,AD∥BC,且∠DCA=∠B,連接OD.
(1)求證:DC與半圓O相切;
(2)若sinB=,OD=3,求半圓O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年廣東省七年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知, , ,求代數(shù)式的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年廣東省七年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:單選題
化簡(a+b+c)-(a-b+c)的結(jié)果為( )
A. 4ab+4bc B. 4ac C. 2ac D. 4ab-4bc
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
氣溫(℃) | 11 | 13 | 14 | 15 | 16 |
天數(shù)(天) | 1 | 1 | 3 | 4 | 2 |
A. | 三月下旬共有11天 | |
B. | 三月下旬中,最低氣溫的眾數(shù)是15℃ | |
C. | 三月下旬中,最低氣溫的中位數(shù)是15℃ | |
D. | 三月下旬中,最低氣溫的平均數(shù)是15℃ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
成績(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù) | 4 | 8 | 12 | 11 | 5 |
A. | 70分,80分 | B. | 80分,80分 | C. | 90分,80分 | D. | 80分,90分 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com