【題目】如圖,已知在平面直角坐標(biāo)系xOy中,RtOAB的直角頂點Bx軸的正半軸上,點A在第一象限,反比例函數(shù)yx0)的圖象經(jīng)過OA的中點C.交AB于點D,連結(jié)CD.若ACD的面積是2,則k的值是_____

【答案】

【解析】

作輔助線,構(gòu)建直角三角形,利用反比例函數(shù)k的幾何意義得到SOCE=SOBD=k,根據(jù)OA的中點C,利用△OCE∽△OAB得到面積比為14,代入可得結(jié)論.

解:連接OD,過CCEAB,交x軸于E,

∵∠ABO90°,反比例函數(shù)yx0)的圖象經(jīng)過OA的中點C,

SCOESBOD,SACDSOCD2,

CEAB

∴△OCE∽△OAB,

4SOCESOAB,

k2+2+k,

k

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰RtABC與等腰RtCDE關(guān)于原點O成位似關(guān)系,相似比為13,∠ACB=∠CED90°,A、CEx軸正半軸上的點,B、D是第一象限的點,BC2,則點D的坐標(biāo)是(  )

A.9,6B.86C.6,9D.6,8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD和∠BCD的平分線AECF分別交DC,BA的延長線于點EF,交邊BC,AD于點HG

(1)求證:四邊形AECF是平行四邊形.

(2)若AB=5,BC=8,求AF+AG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由兩個長為2,寬為1的長方形組成“7”字圖形.

1)將一個“7”字圖形按如圖擺放在平面直角坐標(biāo)系中,記為“7”字圖形,其中頂點位于軸上,頂點位于軸上,為坐標(biāo)原點,則的值為____.

2)在(1)的基礎(chǔ)上,繼續(xù)擺放第二個“7”字圖形得頂點,擺放第三個“7”字圖形得頂點,依此類推,,擺放第“7”字圖形得頂點,則頂點的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20179月,我國中小學(xué)生迎來了新版教育部統(tǒng)編義務(wù)教育語文教科書,本次統(tǒng)編本教材最引人關(guān)注的變化之一是強調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展最受歡迎的傳統(tǒng)文化經(jīng)典著作調(diào)查,隨機調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:

(1)本次一共調(diào)查了   名學(xué)生;

(2)請將條形統(tǒng)計圖補充完整;

(3)某班語文老師想從這四大名著中隨機選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c(c0)的頂點為D,與y軸的交點為C.過點C的直線CA與拋物線交于另一點A(點A在對稱軸左側(cè)),點BAC的延長線上,連結(jié)OA,OB,DADB

(1)如圖1,當(dāng)ACx軸時,

①已知點A的坐標(biāo)是(﹣2,1),求拋物線的解析式;

②若四邊形AOBD是平行四邊形,求證:b24c

(2)如圖2,若b=﹣2,,是否存在這樣的點A,使四邊形AOBD是平行四邊形?若存在,求出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD4,將∠A向內(nèi)翻析,點A落在BC上,記為A1,折痕為DE.若將∠B沿EA1向內(nèi)翻折,點B恰好落在DE上,記為B1,則AB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點,是以點為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù)y1x2+bx+a,y2ax2+bx+1a,b是實數(shù),a≠0).

1)若函數(shù)y1的對稱軸為直線x3,且函數(shù)y1的圖象經(jīng)過點(a,b),求函數(shù)y1的表達式.

2)若函數(shù)y1的圖象經(jīng)過點(r,0),其中r≠0,求證:函數(shù)y2的圖象經(jīng)過點(,0).

3)設(shè)函數(shù)y1和函數(shù)y2的最小值分別為mn,若m+n0,求mn的值.

查看答案和解析>>

同步練習(xí)冊答案