【題目】如圖,已知在平面直角坐標(biāo)系xOy中,Rt△OAB的直角頂點B在x軸的正半軸上,點A在第一象限,反比例函數(shù)y=(x>0)的圖象經(jīng)過OA的中點C.交AB于點D,連結(jié)CD.若△ACD的面積是2,則k的值是_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰Rt△ABC與等腰Rt△CDE關(guān)于原點O成位似關(guān)系,相似比為1:3,∠ACB=∠CED=90°,A、C、E是x軸正半軸上的點,B、D是第一象限的點,BC=2,則點D的坐標(biāo)是( )
A.(9,6)B.(8,6)C.(6,9)D.(6,8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD和∠BCD的平分線AE,CF分別交DC,BA的延長線于點E,F,交邊BC,AD于點H,G.
(1)求證:四邊形AECF是平行四邊形.
(2)若AB=5,BC=8,求AF+AG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由兩個長為2,寬為1的長方形組成“7”字圖形.
(1)將一個“7”字圖形按如圖擺放在平面直角坐標(biāo)系中,記為“7”字圖形,其中頂點位于軸上,頂點,位于軸上,為坐標(biāo)原點,則的值為____.
(2)在(1)的基礎(chǔ)上,繼續(xù)擺放第二個“7”字圖形得頂點,擺放第三個“7”字圖形得頂點,依此類推,…,擺放第個“7”字圖形得頂點,…,則頂點的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年9月,我國中小學(xué)生迎來了新版“教育部統(tǒng)編義務(wù)教育語文教科書”,本次“統(tǒng)編本”教材最引人關(guān)注的變化之一是強調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展“最受歡迎的傳統(tǒng)文化經(jīng)典著作”調(diào)查,隨機調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)本次一共調(diào)查了 名學(xué)生;
(2)請將條形統(tǒng)計圖補充完整;
(3)某班語文老師想從這四大名著中隨機選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c(c>0)的頂點為D,與y軸的交點為C.過點C的直線CA與拋物線交于另一點A(點A在對稱軸左側(cè)),點B在AC的延長線上,連結(jié)OA,OB,DA和DB.
(1)如圖1,當(dāng)AC∥x軸時,
①已知點A的坐標(biāo)是(﹣2,1),求拋物線的解析式;
②若四邊形AOBD是平行四邊形,求證:b2=4c.
(2)如圖2,若b=﹣2,=,是否存在這樣的點A,使四邊形AOBD是平行四邊形?若存在,求出點A的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,將∠A向內(nèi)翻析,點A落在BC上,記為A1,折痕為DE.若將∠B沿EA1向內(nèi)翻折,點B恰好落在DE上,記為B1,則AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點,是以點為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù)y1=x2+bx+a,y2=ax2+bx+1(a,b是實數(shù),a≠0).
(1)若函數(shù)y1的對稱軸為直線x=3,且函數(shù)y1的圖象經(jīng)過點(a,b),求函數(shù)y1的表達式.
(2)若函數(shù)y1的圖象經(jīng)過點(r,0),其中r≠0,求證:函數(shù)y2的圖象經(jīng)過點(,0).
(3)設(shè)函數(shù)y1和函數(shù)y2的最小值分別為m和n,若m+n=0,求m,n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com