9.(1)先化簡(jiǎn),再求值($\frac{1}{a-b}$-$\frac{1}{a+b}$)÷$\frac{{a}^{2}+2ab+^{2}}$,其中,a=1+$\sqrt{2}$,b=1-$\sqrt{2}$.
(2)解不等式組$\left\{\begin{array}{l}{3(x+2)>2x+5}\\{\frac{x-1}{2}≤\frac{x}{3}}\end{array}\right.$,并求它的整數(shù)解.

分析 (1)先算括號(hào)里面的,再算除法,最后把a(bǔ)、b的值代入進(jìn)行計(jì)算即可;
(2)分別求出各不等式的解集,再求出其公共解集,找出x的整數(shù)解即可.

解答 解:(1)原式=$\frac{a+b-a+b}{(a-b)(a+b)}$•$\frac{(a+b)^{2}}$
=$\frac{2b}{(a-b)(a+b)}$•$\frac{{(a+b)}^{2}}$
=$\frac{2(a+b)}{a-b}$,
當(dāng)a=1+$\sqrt{2}$,b=1-$\sqrt{2}$時(shí),原式=$\frac{2(1+\sqrt{2}+1-\sqrt{2})}{1+\sqrt{2}-1+\sqrt{2}}$=$\frac{4}{2\sqrt{2}}$=$\sqrt{2}$;

(2)$\left\{\begin{array}{l}3(x+2)>2x+5①\\ \frac{x-1}{2}≤\frac{x}{3}②\end{array}\right.$,
由①得,x>-1,
由②得,x≤3,
故不等式組的解集為:-1<x≤3,
其整數(shù)解為:0,1,2,3.

點(diǎn)評(píng) 本題考查的是分式的化簡(jiǎn)求值,分式中的一些特殊求值題并非是一味的化簡(jiǎn),代入,求值.許多問(wèn)題還需運(yùn)用到常見(jiàn)的數(shù)學(xué)思想,如化歸思想(即轉(zhuǎn)化)、整體思想等,了解這些數(shù)學(xué)解題思想對(duì)于解題技巧的豐富與提高有一定幫助.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列四組數(shù)分別是三條線段的長(zhǎng)度,能構(gòu)成三角形的是(  )
A.1,1,2B.1,3,4C.2,3,6D.4,5,8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,已知正方形ABCD的邊長(zhǎng)為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長(zhǎng)EF交AB于G,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:①△ADG≌△FDG;②GB=2AG;③△GDE∽BEF;④S△BEF=$\frac{72}{5}$.在以上4個(gè)結(jié)論中,其中一定成立的是①②④(把所有正確結(jié)論的序號(hào)都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知△ABC是等腰直角三角形,AC=BC=2,D是邊AB上一動(dòng)點(diǎn)(A、B兩點(diǎn)除外),將△CAD繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)角α得到△CEF,其中點(diǎn)E是點(diǎn)A的對(duì)應(yīng)點(diǎn),點(diǎn)F是點(diǎn)D的對(duì)應(yīng)點(diǎn).

(1)如圖1,當(dāng)α=90°時(shí),G是邊AB上一點(diǎn),且BG=AD,連接GF.求證:GF∥AC;
(2)如圖2,當(dāng)90°≤α≤180°時(shí),AE與DF相交于點(diǎn)M.
①當(dāng)點(diǎn)M與點(diǎn)C、D不重合時(shí),連接CM,求∠CMD的度數(shù);
②設(shè)D為邊AB的中點(diǎn),當(dāng)α從90°變化到180°時(shí),求點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在矩形ABCD中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(4,3),點(diǎn)A、C在坐標(biāo)軸上,點(diǎn)P在BC邊上,直線l1:y=2x+3,直線l2:y=2x-3.
(1)分別求直線l1與x軸,直線l2與AB的交點(diǎn)坐標(biāo);
(2)已知點(diǎn)M在第一象限,且是直線l2上的點(diǎn),若△APM是等腰直角三角形,求點(diǎn)M的坐標(biāo);
(3)我們把直線l1和直線l2上的點(diǎn)所組成的圖形為圖形F.已知矩形ANPQ的頂點(diǎn)N在圖形F上,Q是坐標(biāo)平面內(nèi)的點(diǎn),且N點(diǎn)的橫坐標(biāo)為x,請(qǐng)直接寫出x的取值范圍(不用說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.正方形ABCD邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直,
(1)證明:Rt△ABM∽R(shí)t△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN面積最大,并求出最大面積;
(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)Rt△ABM∽R(shí)t△AMN,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.化簡(jiǎn)求值:$\frac{x}{{x}^{2}-1}$$÷\frac{{x}^{2}+x}{{x}^{2}+2x+1}$-$\frac{{x}^{2}}{x-1}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列四個(gè)立體圖形中,它們各自的三視圖都相同的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列運(yùn)算正確的是(  )
A.(-$\frac{3}{2}$)2=-$\frac{9}{4}$B.(3a23=9a6C.5-3÷5-5=$\frac{1}{25}$D.$\sqrt{8}-\sqrt{50}=-3\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案