【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于AB兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D

1)求頂點D的坐標(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經過點C

①求拋物線的函數(shù)關系式;

②如圖2,點Ey軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點MN都在拋物線上,作MFx軸于點F,若線段MFBF12,求點MN的坐標;

③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.

【答案】(1)(1,﹣4a);(2)y=﹣x2+2x+3;M(,)、N(,);③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).

【解析】

分析: (1)將二次函數(shù)的解析式進行配方即可得到頂點D的坐標.

(2)①以AD為直徑的圓經過點C,即點C在以AD為直徑的圓的圓周上,依據圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標可得,而C、D的坐標可由a表達出來,在得出AC、CD、AD的長度表達式后,依據勾股定理列等式即可求出a的值.

②將△OBE繞平面內某一點旋轉180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標關鍵是求出點M的坐標;首先根據①的函數(shù)解析式設出M點的坐標,然后根據題干條件:BF=2MF作為等量關系進行解答即可.

③設⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD =2QG =2QB ,設出點Q的坐標,然后用Q點縱坐標表達出QD、QB的長,根據上面的等式列方程即可求出點Q的坐標.

詳解:

(1)∵y=ax2﹣2ax﹣3a=ax﹣1)2﹣4a

D(1,﹣4a).

(2)①∵以AD為直徑的圓經過點C,

∴△ACD為直角三角形,且∠ACD=90°;

y=ax2﹣2ax﹣3a=ax﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:

AC2=9a2+9、CD2=a2+1、AD2=16a2+4

由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4

化簡,得:a2=1,由a<0,得:a=﹣1,

②∵a=﹣1,

∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).

∵將△OBE繞平面內某一點旋轉180°得到△PMN,

PMx軸,且PM=OB=1;

Mx,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;

BF=2MF

x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0

解得:x1=﹣1(舍去)、x2=.

M,)、N).

③設⊙Q與直線CD的切點為G,連接QG,過CCHQDH,如下圖:

C(0,3)、D(1,4),

CH=DH=1,即△CHD是等腰直角三角形,

∴△QGD也是等腰直角三角形,即:QD2=2QG2;

Q(1,b),則QD=4﹣bQG2=QB2=b2+4;

得:(4﹣b2=2(b2+4),

化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;

即點Q的坐標為(1,)或(1,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,∠A=36°,AC的垂直平分線交ABE,D為垂足,連結EC

1)求∠ECD的度數(shù).

2)若CE=9,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明學習電學知識后,用四個開關按鍵(每個開關按鍵閉合的可能性相等)、一個電源和一個燈泡設計了一個電路圖

(1)若小明設計的電路圖如圖1(四個開關按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個開關按鍵,燈泡能發(fā)光的概率;

(2)若小明設計的電路圖如圖2(四個開關按鍵都處于打開狀態(tài))如圖所示,求同時時閉合其中的兩個開關按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,CDAB于點D,AEB=90°,CD=AE.

求證:(1)BCD≌△BAE;(2)EBD是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為等邊ABC外一點,AH垂直平分PC于點H,∠BAP的平分線交PC于點D

1)求證:DPDB

2)求證:DA+DBDC;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B=60°,對角線AC平分角∠BAD,點P是△ABC內一點,連接PA、PB、PC,若PA=6,PB=8,PC=10,則菱形ABCD的面積等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結論:SABESBCE;AFG=∠AGF;FAG2ACF;BHCH.其中所有正確結論的序號是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,ACB=90°,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角坐標系中,ABC繞點B順時針旋轉,使點A旋轉至y軸的正半軸上的A,AO=OB=2,則陰影部分面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的個數(shù)是

若代數(shù)式有意義,則x的取值范圍為x≤1x≠0

我市生態(tài)旅游初步形成規(guī)模,2012年全年生態(tài)旅游收入為302 600 000元,保留三個有效數(shù)字用科學記數(shù)法表示為3.03×108元.

若反比例函數(shù)m為常數(shù)),當x0時,yx增大而增大,則一次函數(shù)y=﹣2x+m的圖象一定不經過第一象限.

若函數(shù)的圖象關于y軸對稱,則函數(shù)稱為偶函數(shù),下列三個函數(shù):y=3,y=2x+1,y=x2中偶函數(shù)的個數(shù)為2個.

A1 B2 C3 D4

查看答案和解析>>

同步練習冊答案