【題目】已知關(guān)于x的一元二次方程x2+(2m﹣1)x+m2=0有兩個實(shí)數(shù)根x1和x2 .
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x12﹣x22=0時,求m的值.
【答案】
(1)解:由題意有△=(2m﹣1)2﹣4m2≥0,
解得 ,
∴實(shí)數(shù)m的取值范圍是
(2)解:由兩根關(guān)系,得根x1+x2=﹣(2m﹣1),x1x2=m2,
由x12﹣x22=0得(x1+x2)(x1﹣x2)=0,
若x1+x2=0,即﹣(2m﹣1)=0,解得 ,
∵ > ,
∴ 不合題意,舍去,
若x1﹣x2=0,即x1=x2
∴△=0,由(1)知 ,
故當(dāng)x12﹣x22=0時,
【解析】(1)若一元二次方程有兩實(shí)數(shù)根,則根的判別式△=b2﹣4ac≥0,建立關(guān)于m的不等式,求出m的取值范圍;(2)由x12﹣x22=0得x1+x2=0或x1﹣x2=0;當(dāng)x1+x2=0時,運(yùn)用兩根關(guān)系可以得到﹣2m﹣1=0或方程有兩個相等的實(shí)根,據(jù)此即可求得m的值.
【考點(diǎn)精析】本題主要考查了求根公式和根與系數(shù)的關(guān)系的相關(guān)知識點(diǎn),需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實(shí)數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實(shí)數(shù)根3、當(dāng)△<0時,一元二次方程沒有實(shí)數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為直角△ABC的斜邊AB上一點(diǎn),DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好與B重合,聯(lián)結(jié)CD交BE于F,如果AC═8,tanA═ ,那么CF:DF═
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七班派出名同學(xué)參加數(shù)學(xué)競賽,老師以分為基準(zhǔn),把分?jǐn)?shù)超過分的部分記為正數(shù),不足部分記為負(fù)數(shù).評分記錄如下:,,,,,,,,,,,.
這名同學(xué)中最高分和最低分各是多少?
超過基準(zhǔn)分的和低于基準(zhǔn)分的各有多少人?
這十二名同學(xué)的平均成績是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個數(shù)為( )
①a=,b=,c=; ②a=b,∠A=45°; ③a=2,b=2,c=;④∠A=27°,∠B=63°;⑤a=9,b=12,c=15
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)-14-×[2-(-3)]; (2)(-3)-1×-6÷|-|;
(3)2×[5+]-(-|-4|÷);(4)--[-3+(-3)÷(-)].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x﹣3與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=x2+bx+c經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上一動點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時,在x軸下方拋物線上是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“紅樹林小組”全體組員參加了義務(wù)植樹活動,領(lǐng)得準(zhǔn)備種植的樹苗一批,組長決定采用分工負(fù)責(zé)制,經(jīng)計算發(fā)現(xiàn):若每位組員種植10棵樹苗,則還剩88棵;若每位組員種植12棵樹苗,則有一位組員種植的樹苗不到4棵,求準(zhǔn)備種植樹苗的棵數(shù)和“紅樹林小組”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊分別均勻的等腰三角形蛋糕(AB=AC且AB≠BC),在蛋糕的邊緣均勻分布著巧克力,小明和小華決定只切一刀將這塊蛋糕平分(要求分得的蛋糕和巧克力質(zhì)量都一樣).
這條分割直線既平分了三角形的面積,又平分了三角形的周長,我們稱這條直線為三角形的“等分積周線”.
(1)小明很快就想到了一條經(jīng)過點(diǎn)A分割直線,請你用尺規(guī)作圖在圖1中畫出這條“等分積周線(不寫畫法).
(2)小華覺得小明的方法很好,所以自己模仿著在圖2中過點(diǎn)C畫了一條直線CD交AB于點(diǎn)D.你覺得小華會成功嗎?請說明理由.
(3)若AB=BC=5,BC=6,請你通過計算,在圖3中找出△ABC不經(jīng)過頂點(diǎn)的一條“等分積周線”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com