【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
①因?yàn)?/span>a>0,所以函數(shù)有最大值;
②該函數(shù)圖象關(guān)于直線對(duì)稱;
③當(dāng)時(shí),函數(shù)y的值大于0;
④當(dāng)時(shí),函數(shù)y的值都等于0.
其中正確結(jié)論的個(gè)數(shù)是
A.1 B.2 C.3 D.4
【答案】B
【解析】觀察圖象即可判斷.①開口向上,應(yīng)有最小值;②根據(jù)拋物線與x軸的交點(diǎn)坐標(biāo)來確定拋物線的對(duì)稱軸方程;③x=-2時(shí),對(duì)應(yīng)的圖象上的點(diǎn)在x軸下方,所以函數(shù)值小于0;④圖象與x軸交于-3和1,所以當(dāng)x=-3或x=1時(shí),函數(shù)y的值都等于0.
解答:解:由圖象知:
①函數(shù)有最小值;錯(cuò)誤.
②該函數(shù)的圖象關(guān)于直線x=-1對(duì)稱;正確.
③當(dāng)x=-2時(shí),函數(shù)y的值小于0;錯(cuò)誤.
④當(dāng)x=-3或x=1時(shí),函數(shù)y的值都等于0.正確.
故正確的有兩個(gè),選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線分別交軸、軸于點(diǎn)、,直線與直線交于點(diǎn),點(diǎn)在第二象限,過、兩點(diǎn)分別作于,于,且,,則的長(zhǎng)為( )
A.2B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究問題:已知,畫一個(gè)角,使,且交于點(diǎn).與有怎樣的數(shù)量關(guān)系?
(1)我們發(fā)現(xiàn)與有兩種位置關(guān)系:如圖1與圖2所示.
①圖1中與數(shù)量關(guān)系為____________;圖2中與數(shù)量關(guān)系為____________.請(qǐng)選擇其中一種情況說明理由.
②由①得出一個(gè)真命題(用文字?jǐn)⑹?/span>):____________________________.
(2)應(yīng)用②中的真命題,解決以下問題:若兩個(gè)角的兩邊互相平行,且一個(gè)角比另一個(gè)角的2倍少30°,請(qǐng)直接寫出這兩個(gè)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)閱讀以下材料,并解決問題:
配方法是數(shù)學(xué)中重要的一種思想方法. 它是指將一個(gè)式子或一個(gè)式子的某一部分通過恒等變形化為完全平方式或幾個(gè)完全平方式的和的方法. 這種方法常被用到代數(shù)恒等變形中,并結(jié)合非負(fù)數(shù)的意義來解決一些問題.
(例1)把二次三項(xiàng)式進(jìn)行配方.
解:-4.
(例2)已知,求和的值.
解:由已知得:
,
即,
所以,
所以.
(1)若可配方成 (為常數(shù)),求和的值;
(2)已知實(shí)數(shù)滿足,求的最大值;
(3)已知為正實(shí)數(shù),且滿足和,試判斷以為三邊的長(zhǎng)的三角形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】珠海到韶關(guān)的距離約為360千米,小劉駕駛小轎車,小張駕駛大貨車,兩人都從珠海去韶關(guān),小劉比小張晚出發(fā)90分鐘,最后兩車同時(shí)到達(dá)韶關(guān),已知小轎車的速度是大貨車速度的1.5倍.
(1)分別求小轎車和大貨車的速度;
(2)當(dāng)小劉行駛了2小時(shí),此時(shí)兩車相距多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P為圓上一點(diǎn),點(diǎn)C為AB延長(zhǎng)線上一點(diǎn),PA=PC,∠C=30°.
(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在三角形中,把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,連接,過點(diǎn)作的垂線,交于點(diǎn),交于點(diǎn).
(特例嘗試)如圖2,當(dāng)時(shí),
①求證:;
②猜想與的數(shù)量關(guān)系并說明理由.
(理想論證)在圖1中,當(dāng)為任意三角形時(shí),②中與的數(shù)量關(guān)系還成立嗎?請(qǐng)給予證明.
(拓展應(yīng)用)如圖3,直線與軸,軸分別交于、兩點(diǎn),分別以,為直角邊在第二、一象限內(nèi)作等腰和等腰,連接,交軸于點(diǎn).試猜想的長(zhǎng)是否為定值,若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=2.
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com