【題目】如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,拋物線(xiàn)y=+bx+c經(jīng)過(guò)A,B兩點(diǎn),拋物線(xiàn)的頂點(diǎn)為D.
(1)、求b,c的值;
(2)、點(diǎn)E是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(點(diǎn)A、B除外),過(guò)點(diǎn)E作x軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)F,當(dāng)線(xiàn)段EF的長(zhǎng)度最大時(shí),求點(diǎn)E的坐標(biāo);
(3)、在(2)的條件下:①求以點(diǎn)E、B、F、D為頂點(diǎn)的四邊形的面積;②在拋物線(xiàn)上是否存在一點(diǎn)P,使△EFP是以EF為直角邊的直角三角形? 若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1)、b=-2;c=-3;(2)、(,);(3)、;,(
【解析】
試題分析:(1)、根據(jù)題意求出點(diǎn)A、點(diǎn)B的坐標(biāo),然后代入解析式求出b、c的值;(2)、射線(xiàn)求出直線(xiàn)AB的解析式,設(shè)出點(diǎn)E和F的坐標(biāo),求出EF的長(zhǎng)度,然后根據(jù)函數(shù)的性質(zhì)求出最值;(3)、首先求出點(diǎn)D和點(diǎn)F的坐標(biāo),將四邊形的面積轉(zhuǎn)化成△BEF和△DEF進(jìn)行求解;過(guò)點(diǎn)E作a⊥EF交拋物線(xiàn)與點(diǎn)P,設(shè)出點(diǎn)P的坐標(biāo),解出方程;過(guò)F作b⊥EF交拋物線(xiàn)與點(diǎn)P,設(shè)出點(diǎn)P的坐標(biāo),解出方程.
試題解析:(1)由已知得:A(-1,0) B(4,5)∵二次函數(shù)y=+bx+c的圖像經(jīng)過(guò)點(diǎn)A(-1,0)B(4,5)
∴ 解得:b=-2 c=-3
(2)、如圖:∵直線(xiàn)AB經(jīng)過(guò)點(diǎn)A(-1,0) B(4,5) ∴直線(xiàn)AB的解析式為:y=x+1
∵二次函數(shù)y=-2x-3 ∴設(shè)點(diǎn)E(t,t+1),則F(t,-2t-3)
∴EF=(t+1)-(-2t-3)=
∴當(dāng)時(shí),EF的最大值= ∴點(diǎn)E的坐標(biāo)為(,)
①如圖:
順次連接點(diǎn)E、B、F、D得四邊形EBFD.
可求出點(diǎn)F的坐標(biāo)(,),點(diǎn)D的坐標(biāo)為(1,-4)
S=S+S
== /p>
②如圖:ⅰ)過(guò)點(diǎn)E作a⊥EF交拋物線(xiàn)于點(diǎn)P,設(shè)點(diǎn)P(m,)則有:解得:, ∴,
ⅱ)過(guò)點(diǎn)F作b⊥EF交拋物線(xiàn)于,設(shè)(n,)則有:
解得: ,(與點(diǎn)F重合,舍去)∴
綜上所述:所有點(diǎn)P的坐標(biāo):,(能使△EFP組成以EF為直角邊的直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,△ABC的周長(zhǎng)為17cm,斜邊上中線(xiàn)BD長(zhǎng)為 .則該三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對(duì)稱(chēng)中心O處,折痕為EF,若菱形ABCD的邊長(zhǎng)為2cm,∠A=120°,則EF=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線(xiàn)與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線(xiàn)與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線(xiàn)上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=﹣2(x﹣1)2+3的頂點(diǎn)坐標(biāo)是( )
A.(﹣1,3)
B.(1,3)
C.(1,﹣3)
D.(﹣1,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校早上8時(shí)上第一節(jié)課,45分鐘后下課,這節(jié)課中分針轉(zhuǎn)動(dòng)的角度為( )
A.45°
B.90°
C.180°
D.270°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com