【題目】如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.
填空:______;
證明:;
當四邊形ABCD的面積和的面積相等時,求點P的坐標.
【答案】(1)3;(2)證明見解析;(3)點坐標為.
【解析】
由點B的坐標,利用反比例函數(shù)圖象上點的坐標特征可求出k值;
設A點坐標為,則D點坐標為,P點坐標為,C點坐標為,進而可得出PB,PC,PA,PD的長度,由四條線段的長度可得出,結合可得出∽,由相似三角形的性質可得出,再利用“同位角相等,兩直線平行”可證出;
由四邊形ABCD的面積和的面積相等可得出,利用三角形的面積公式可得出關于a的方程,解之取其負值,再將其代入P點的坐標中即可求出結論.
解:點在反比例函數(shù)的圖象,
.
故答案為:3.
證明:反比例函數(shù)解析式為,
設A點坐標為
軸于點C,軸于點D,
點坐標為,P點坐標為,C點坐標為,
,,,,
,,
.
又,
∽,
,
.
解:四邊形ABCD的面積和的面積相等,
,
,
整理得:,
解得:,舍去,
點坐標為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC>BC,分別以AB,BC,CA為一邊向△ABC外作正方形ABDE、BCMN,CAFG,連接EF、GM、ND,設△AEF、△BND、△CGM的面積分別為S1、S2、S3.
(1)猜想S1、S2、S3的大小關系.
(2)請對(1)的猜想,任選一個關系進行證明;
(3)若將圖1中的Rt△ABC改為圖2中的任意△ABC,若SABC=5,求出S1+S2+S3的值;
(4)若將圖2中的任意△ABC改為任意凸四邊形ABCD,若S△AEG+S△CNK+S△IBH+S△DFM=α,則四邊形ABCD的面積為 (直接用含α的代數(shù)式表示結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定,以二次函數(shù)y=ax2+bx+c的二次項系數(shù)a的2倍為一次項系數(shù),一次項系數(shù)b為常數(shù)項構造的一次函數(shù)y=2ax+b叫做二次函數(shù)y=ax2+bx+c的“子函數(shù)”,反過來,二次函數(shù)y=ax2+bx+c叫做一次函數(shù)y=2ax+b的“母函數(shù)”.
(1)若一次函數(shù)y=2x-4是二次函數(shù)y=ax2+bx+c的“子函數(shù)”,且二次函數(shù)經過點(3,0),求此二次函數(shù)的解析式及頂點坐標.
(2)若“子函數(shù)”y=x-6的“母函數(shù)”的最小值為1,求“母函數(shù)”的函數(shù)表達式.
(3)已知二次函數(shù)y=-x2-4x+8的“子函數(shù)”圖象直線l與x軸、y軸交于C、D兩點,動點P為二次函數(shù)y=-x2-4x+8對稱軸右側上的動點,求△PCD的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OABC的頂點A在x軸上,頂點B的坐標為(6,4).若直線l經過點(1,0),且將OABC分割成面積相等的兩部分,則直線l的函數(shù)解析式是( 。
A. y=x+1B. C. y=3x﹣3D. y=x﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一直角坐標系中,拋物線C1:y=ax2﹣2x﹣3與拋物線C2:y=x2+mx+n關于y軸對稱,C2與x軸交于A、B兩點,其中點A在點B的左側.
(1)求拋物線C1,C2的函數(shù)表達式;
(2)求A、B兩點的坐標;
(3)在拋物線C1上是否存在一點P,在拋物線C2上是否存在一點Q,使得以AB為邊,且以A、B、P、Q四點為頂點的四邊形是平行四邊形?若存在,求出P、Q兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的運算程序中,若開始輸入的x值為32,我們發(fā)現(xiàn)第一次輸出的結果為16,第二次輸出的結果為8,…,則第2019次輸出的結果為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經過點A(﹣2,0),點B(0,4).
(1)求這條拋物線的表達式;
(2)P是拋物線對稱軸上的點,聯(lián)結AB、PB,如果∠PBO=∠BAO,求點P的坐標;
(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點D作DE∥x軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:
甲林場 | 乙林場 | ||
購樹苗數(shù)量 | 銷售單價 | 購樹苗數(shù)量 | 銷售單價 |
不超過1000棵時 | 4元/棵 | 不超過2000棵時 | 4元/棵 |
超過1000棵的部分 | 3.8元/棵 | 超過2000棵的部分 | 3.6元/棵 |
設購買白楊樹苗x棵,到兩家林場購買所需費用分別為y甲(元)、y乙(元).
(1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為 元,若都在乙林場購買所需費用為 元;
(2)分別求出y甲、y乙與x之間的函數(shù)關系式;
(3)如果你是該村的負責人,應該選擇到哪家林場購買樹苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=-x+2分別交x軸、y軸于點A、B,拋物線y=﹣x2+bx+c經過點A、B.點P是x軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設點P的橫坐標為m.
(1)點A的坐標為 .
(2)求這條拋物線所對應的函數(shù)表達式.
(3)點P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值.
(4)若E、F、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、F、P三點為“共諧點”.直接寫出E、F、P三點成為“共諧點”時m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com