【題目】如圖,在ABC中,OBOC分別平分∠ABC和∠ACB,過ODEBC,分別交AB、AC于點D、E,若DE=5,BD=3,則線段CE的長為( 。

A. 3 B. 1 C. 2 D. 4

【答案】C

【解析】

根據(jù)OBOC分別平分∠ABC和∠ACB,和DEBC,利用兩直線平行,內(nèi)錯角相等和等量代換,求證出DB=DO,OE=EC.然后即可得出答案

∵在ABC中,OBOC分別平分∠ABC和∠ACB,

∴∠DBO=OBC,ECO=OCB,

DEBC,

∴∠DOB=OBC=DBO,EOC=OCB=ECO,

DB=DO,OE=EC,

DE=DO+OE,

CE=OE=DE-OD=DE-BD=5-3=2.

故答案為:2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O外一點,過點C作⊙O的切線,切點為B,連結(jié)AC交⊙O于D,∠C=38°.點E在AB右側(cè)的半圓上運動(不與A、B重合),則∠AED的大小是( 。

A.19°
B.38°
C.52°
D.76°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對角線DB重合,點A落在點A′處,折痕為DE,則A′E的長是( 。

A.1
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(a,6)是第一象限內(nèi)正比例函數(shù)y=3x的圖象上的一點,AB⊥x軸,交直線OBB點,三角形OAB的面積為5,求直線OB所對應(yīng)的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,表示小王騎自行車和小李騎摩托車者沿相同的路線由甲地到乙地行駛過程的函數(shù)圖象,兩地相距80千米,請根據(jù)圖象解決下列問題:

(1)哪一個人出發(fā)早?早多長時間?哪一個人早到達目的地?早多長時間?

(2)求出兩個人在途中行駛的速度是多少?

(3)分別求出表示自行車和摩托車行駛過程的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,∠A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為(
A.1
B.
C.2
D. +1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:P、Q分別是兩條線段a和b上任意一點,線段PQ的長度的最小值叫做線段a與線段b的距離. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標系中四點.

(1)根據(jù)上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離是;當m=5,n=2時,如圖2,線段BC與線段OA的距離為;
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M, ①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按下面的方法折紙,然后回答問題:

11與∠AEC有何關(guān)系?

21,3有何關(guān)系?

32是多少度的角?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。

(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡)

(2)連接DE,求證:△ADE≌△BDE。

查看答案和解析>>

同步練習冊答案