【題目】定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ的長度的最小值叫做線段a與線段b的距離. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).

(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是;當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離為;
(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M, ①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長;
②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點(diǎn)的三角形與△AOD相似?若存在,求出m的值;若不存在,請(qǐng)說明理由.

【答案】
(1)解:當(dāng)m=2,n=2時(shí),

如題圖1,線段BC與線段OA的距離(即線段BN的長)=2;

當(dāng)m=5,n=2時(shí),

B點(diǎn)坐標(biāo)為(5,2),線段BC與線段OA的距離,即為線段AB的長,

如答圖2,過點(diǎn)B作BN⊥x軸于點(diǎn)N,則AN=1,BN=2,

在Rt△ABN中,由勾股定理得:AB= = =


(2)解:如答圖2所示,當(dāng)點(diǎn)B落在⊙A上時(shí),m的取值范圍為2≤m≤6:

當(dāng)4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;

當(dāng)2≤m<4時(shí),作BN⊥x軸于點(diǎn)N,線段BC與線段OA的距離等于BN長,

ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:

∴d= = =


(3)解:①依題意畫出圖形,點(diǎn)M的運(yùn)動(dòng)軌跡如答圖3中粗體實(shí)線所示:

由圖可見,封閉圖形由上下兩段長度為8的線段,以及左右兩側(cè)半徑為2的半圓所組成,

其周長為:2×8+2×π×2=16+4π,

∴點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長為:16+4π.

②結(jié)論:存在.

∵m≥0,n≥0,∴點(diǎn)M位于第一象限.

∵A(4,0),D(0,2),∴OA=2OD.

如答圖所示,相似三角形有三種情形:

(i)△AM1H1,此時(shí)點(diǎn)M縱坐標(biāo)為2,點(diǎn)H在A點(diǎn)左側(cè).

如圖,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,

由相似關(guān)系可知,M1H1=2AH1,即2=2(2﹣m),

∴m=1;

(ii)△AM2H2,此時(shí)點(diǎn)M縱坐標(biāo)為2,點(diǎn)H在A點(diǎn)右側(cè).

如圖,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,

由相似關(guān)系可知,M2H2=2AH2,即2=2(m﹣2),

∴m=3;

(iii)△AM3H3,此時(shí)點(diǎn)B落在⊙A上.

如圖,OH3=m+2,AH3=OH3﹣OA=m﹣2,

過點(diǎn)B作BN⊥x軸于點(diǎn)N,則BN=M3H3=n,AN=m﹣4,

由相似關(guān)系可知,AH3=2M3H3,即m﹣2=2n (1)

在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2 (2)

由(1)、(2)式解得:m1= ,m2=2,

當(dāng)m=2時(shí),點(diǎn)M與點(diǎn)A橫坐標(biāo)相同,點(diǎn)H與點(diǎn)A重合,故舍去,

∴m=

綜上所述,存在m的值使以A、M、H為頂點(diǎn)的三角形與△AOD相似,m的取值為:1、3或


【解析】(1)理解新定義,按照新定義的要求求出兩個(gè)距離值;(2)如答圖2所示,當(dāng)點(diǎn)B落在⊙A上時(shí),m的取值范圍為2≤m≤6: 當(dāng)4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;
當(dāng)2≤m<4時(shí),作BN⊥x軸于點(diǎn)N,線段BC與線段OA的距離等于BN長;(3)①在準(zhǔn)確理解點(diǎn)M運(yùn)動(dòng)軌跡的基礎(chǔ)上,畫出草圖,如答圖3所示.由圖形可以直觀求出封閉圖形的周長;②如答圖4所示,符合題意的相似三角形有三個(gè),需要進(jìn)行分類討論,分別利用點(diǎn)的坐標(biāo)關(guān)系以及相似三角形比例線段關(guān)系求出m的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點(diǎn),且BE=CF,連接AF,DE交于點(diǎn)O.求證:

(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)8+(﹣)﹣5﹣(﹣0.25)

(2)﹣82+72÷36

(3)﹣4.2+5.7﹣8.4﹣2.3

(4)25×+25×(﹣

(5)|﹣0.2|﹣|﹣3﹣(+8)|﹣|﹣8﹣2+10|

(6)(﹣5)×(﹣8)×(﹣2.5)×9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,OBOC分別平分∠ABC和∠ACB,過ODEBC,分別交AB、AC于點(diǎn)D、E,若DE=5,BD=3,則線段CE的長為( 。

A. 3 B. 1 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y=kx(x≥0)與反比例函數(shù)y= 的圖象交于點(diǎn)A(2,3),
(1)求k,m的值;
(2)寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的父母出去散步,從家走了20分鐘到一個(gè)離家900米的報(bào)亭,母親隨即按原速度返回家,父親在報(bào)亭看了10分鐘報(bào)紙后,用15分鐘返回家,則表示父親、母親離家距離與時(shí)間之間的關(guān)系是(只需填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°

(1)用尺規(guī)作AB的垂直平分線MNBC于點(diǎn)P(不寫作法,保留作圖痕跡).

(2)連接AP,如果AP平分∠CAB,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2

1)求證:BD=CE

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鈍角三角形△ABC的面積是15,最長邊AB=10,BD平分∠ABC,點(diǎn)M,N分別是BD,BC上的動(dòng)點(diǎn),則CM+MN的最小值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案