某商店經(jīng)營一批進(jìn)價每件為2元的小商品,在市場營銷的過程中發(fā)現(xiàn):如果該商品按每件最低價3元銷售,日銷售量為18件,如果單價每提高1元,日銷售量就減少2件.設(shè)銷售單價為x(元),日銷售量為y(件).
(1)寫出日銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)設(shè)日銷售的毛利潤(毛利潤=銷售總額-總進(jìn)價)為P(元),求出毛利潤P(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(3)在下圖所示的坐標(biāo)系中畫出P關(guān)于x的函數(shù)圖象的草圖,并標(biāo)出頂點的坐標(biāo);
(4)觀察圖象,說出當(dāng)銷售單價為多少元時,日銷售的毛利潤最高是多少?
由題意得:
(1)y=18-2(x-3)=-2x+24;

(2)P=(x-2)•y=(x-2)(-2x+24)=-2x2+28x-48;

(3)畫圖,頂點為(7,50);

(4)銷售單價7元時,日銷售的毛利潤最高,最高為50元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,以O(shè)為原點,OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標(biāo)和過O、C、A三點的拋物線的解析式;
(2)P是此拋物線的對稱軸上一動點,當(dāng)以P、O、C為頂點的三角形是等腰三角形時,請直接寫出點P的坐標(biāo);
(3)M(x,y)是此拋物線上一個動點,當(dāng)△MOB的面積等于△OAB面積時,求M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(1,0)、B(3,0)、C(0,3).
(1)試求出拋物線的解析式;
(2)問:在拋物線的對稱軸上是否存在一個點Q,使得△QAC的周長最小,試求出△QAC的周長的最小值,并求出點Q的坐標(biāo);
(3)現(xiàn)有一個動點P從拋物線的頂點T出發(fā),在對稱軸上以1個單位長度每秒的速度向y軸的正方向運動,試問,經(jīng)過幾秒后,△PAC是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2-k+m與x軸交于A(1,0),B(x2,0),與y軸負(fù)半軸交于點C,AB•OC=6,求拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出y>0時,x的取值范圍______;
(2)寫出y隨x的增大而減小的自變量x的取值范圍______;
(3)求函數(shù)y=ax2+bx+c的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店購進(jìn)一批單價為20元的日用商品,如果以單價30元銷售那么半月內(nèi)可售出400件,根據(jù)銷售經(jīng)驗,推廣銷售單價會導(dǎo)致銷售量的減少,即銷售單價每提高1元,銷售量相應(yīng)減少20件.
(1)銷售單價提高多少元,可獲利4480元.
(2)如何提高售價,才能在半月內(nèi)獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-2mx+m2-4的圖象與x軸交于A、B兩點(點A在點B的左邊),且與y軸交于點D.
(1)當(dāng)點D在y軸正半軸時,是否存在實數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請說明理由;
(2)當(dāng)m=-1時,將函數(shù)y=x2-2mx+m2-4的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象Ω.當(dāng)直線y=
1
2
x+b
與圖象Ω有兩個公共點時,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標(biāo)和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PFDE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,根據(jù)圖形寫出一個符合圖象的二次函數(shù)表達(dá)式:______.

查看答案和解析>>

同步練習(xí)冊答案