【題目】如圖,Rt△AOB繞著一點(diǎn)旋轉(zhuǎn)到△AOB′的位置,可以看到點(diǎn)A旋轉(zhuǎn)到點(diǎn)A′,OA旋轉(zhuǎn)到OA′,∠AOB旋轉(zhuǎn)到∠AOB′,這些都是互相對(duì)應(yīng)的點(diǎn)、線段和角.已知∠AOB=30°,∠AOB′=10°,那么點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)______;線段OB的對(duì)應(yīng)線段是線段_____;∠A的對(duì)應(yīng)角是______;旋轉(zhuǎn)中心是點(diǎn)_______;旋轉(zhuǎn)的角度是______度.

【答案】 B OB A O 40

【解析】試題解析:∵AA′、OAOA′分別是相互對(duì)應(yīng)的點(diǎn)、線、角,

∴點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)B′,點(diǎn)O為旋轉(zhuǎn)中心,

∴線段OB的對(duì)應(yīng)線段為OB′,A的對(duì)應(yīng)角是

∵對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線的夾角為旋轉(zhuǎn)角,

均為旋轉(zhuǎn)角.

故答案為:B、OB′、A′、O、.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,.點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),、分別平分、分別交射線于點(diǎn).

(1)的度數(shù)是________;

,________;

(2)的度數(shù);

(3)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說明理由;若變化,請(qǐng)寫出變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)?/span>友好拋物線,拋物線C1y1=﹣2x2+4x+2C2u2=﹣x2+mx+n友好拋物線

1)求拋物線C2的解析式.

2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過AAQx軸,Q為垂足,求AQ+OQ的最大值.

3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問在C2的對(duì)稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)E處,ECADF.

(1)求證:△AEF≌△CDF;

(2)AB=4,BC=8,EF=3,求圖中陰影部分的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的邊長(zhǎng)為2,B=60°,點(diǎn)P、Q分別是邊BC、CD上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且BP=CQ

1)圖中除了ABCADC外,還有哪些三角形全等請(qǐng)寫出來;

2點(diǎn)PQ在運(yùn)動(dòng)過程中,四邊形APCQ的面積是否變化,如果變化,請(qǐng)說明理由如果不變,請(qǐng)求出面積;

3)當(dāng)點(diǎn)P在什么位置時(shí),PCQ的面積最大,并請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,

①寫出A、B、C的坐標(biāo).

②以原點(diǎn)O為對(duì)稱中心,畫出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A1B1C1,并寫出A1、B1、C1的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,四邊形為長(zhǎng)方形,其中點(diǎn)的坐標(biāo)分別為,且軸,交軸于點(diǎn),軸于點(diǎn).

1)求兩點(diǎn)坐標(biāo);

2)一動(dòng)點(diǎn)出發(fā),以2個(gè)單位/秒的速度沿點(diǎn)運(yùn)動(dòng)(不與點(diǎn)重合),在點(diǎn)運(yùn)動(dòng)過程中,連接

①試探究之間的數(shù)量關(guān)系;并說明理由;

②是否存在某一時(shí)刻,使三角形的面積等于長(zhǎng)方形面積的?若存在,求的值并求此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

③三角形的面積記作;三角形的面積記作;三角形的面積記作;直接寫出、的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把一條拋物線先向上平移3個(gè)單位長(zhǎng)度,然后繞原點(diǎn)旋轉(zhuǎn)180°得到拋物線y=x2+5x+6,則原拋物線的解析式是( )

A. y=x2 B. y=x+2

C. y=x2 D. y=x+2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:.

2)解不等式,并把解集在數(shù)軸上表示出來.

3)解方程組:

查看答案和解析>>

同步練習(xí)冊(cè)答案