【題目】如圖,已知菱形ABCD的邊長為2,∠B=60°,點P、Q分別是邊BC、CD上的動點(不與端點重合),且BP=CQ.
(1)圖中除了△ABC與△ADC外,還有哪些三角形全等,請寫出來;
(2)點P、Q在運動過程中,四邊形APCQ的面積是否變化,如果變化,請說明理由;如果不變,請求出面積;
(3)當(dāng)點P在什么位置時,△PCQ的面積最大,并請說明理由.
【答案】(1)△ABP≌△ACQ,△APC≌△AQD;(2)不變,;(3)點P是BC的中點時.
【解析】
試題(2)根據(jù)三角形全等的條件進行判定;
(2)因為△ABP≌△ACQ,所以四邊形APCQ的面積與△ABC的面積相等,沒有發(fā)生變化;
(3)當(dāng)點P是BC的中點時,△PCQ的面積最大.
(1)△ABP≌△ACQ,△APC≌△AQD.
(2)面積不變(1分).因為△ABP≌△ACQ,所以四邊形APCQ的面積與△ABC的面積相等,即四邊形APCQ的面積為.
(3)當(dāng)點P是BC的中點時,△PCQ的面積最大.先說明△APQ是等邊三角形,當(dāng)點P是BC的中點時,AP垂直于BC,AP最小,此時△APQ的面積也就最。试谒倪呅APCQ的面積一定,△APQ面積最小時,△PCQ的面積最大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“國際無煙日”來臨之際,小敏同學(xué)就一批公眾對在餐廳吸煙所持的三種態(tài)度(徹底禁煙、建立吸煙室、其他)進行了調(diào)查,并把調(diào)查結(jié)果繪制成如圖所示統(tǒng)計圖,請根據(jù)圖中的信息回答下列問題:
(1)被調(diào)查者中,不吸煙者中贊成“徹底禁煙”的人數(shù)有______人;
(2)本次抽樣調(diào)查的樣本容量為_______;
(3)被調(diào)查中,希望建立吸煙室的人數(shù)有______;
(4)某市現(xiàn)有人口約30萬人,根據(jù)圖中的信息估計贊成在餐廳徹底禁煙的人數(shù)約有______萬人。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】O為直線AB上的一點,OC⊥OD,射線OE平分∠AOD.
(1)如圖①,判斷∠COE和∠BOD之間的數(shù)量關(guān)系,并說明理由;
(2)若將∠COD繞點O旋轉(zhuǎn)至圖②的位置,試問(1)中∠COE和∠BOD之間的數(shù)量關(guān)系是否發(fā)生變化?并說明理由;
(3)若將∠COD繞點O旋轉(zhuǎn)至圖③的位置,探究∠COE和∠BOD之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結(jié)果是12,第2次輸出的結(jié)果是6,第3次輸出的結(jié)果是 ,依次繼續(xù)下去…,第2013次輸出的結(jié)果是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某沿海城市A接到臺風(fēng)警報,在該城市正南方向260 km的B處有一臺風(fēng)中心,沿BC方向以15 km/h的速度向C移動,已知城市A到BC的距離AD=100 km,那么臺風(fēng)中心經(jīng)過多長時間從B點移動到D點?如果在距臺風(fēng)中心30 km的圓形區(qū)域內(nèi)都將受到臺風(fēng)的影響,正在D點休息的游人在接到臺風(fēng)警報后的幾小時內(nèi)撤離才可以免受臺風(fēng)的影響?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB繞著一點旋轉(zhuǎn)到△A′OB′的位置,可以看到點A旋轉(zhuǎn)到點A′,OA旋轉(zhuǎn)到OA′,∠AOB旋轉(zhuǎn)到∠A′OB′,這些都是互相對應(yīng)的點、線段和角.已知∠AOB=30°,∠AOB′=10°,那么點B的對應(yīng)點是點______;線段OB的對應(yīng)線段是線段_____;∠A的對應(yīng)角是______;旋轉(zhuǎn)中心是點_______;旋轉(zhuǎn)的角度是______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=x2-(2m-1)x+m2+3m+4.
(1)探究m取不同值時,二次函數(shù)y的圖象與x軸的交點的個數(shù)情況;
(2)設(shè)二次函數(shù)的圖象與x軸的交點為A(x1,0),B(x2,0),且x12+x22=5,與y軸的交點為C,它的頂點為M,求直線CM的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( )
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,,分別在軸正半軸和軸負半軸上,在第二象限,滿足:,.已知.
(1)求,的坐標(biāo);
(2)求點的坐標(biāo)及的面積;
(3)已知是軸的正半軸上一點,,在第一象限,,,連接交軸于點.
①求證:.
②在點的移動過程中,給出以下兩個結(jié)論:(i)的值不變;(ii)的值不變,其中有且只有一個是正確的,請你找出這個結(jié)論并求其值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com