已知函數(shù)f(x)=x2+λx,p、q、r為△ABC的三邊,且p<q<r,若對(duì)所有的正整數(shù)p、q、r都滿足f(p)<f(q)<f(r),則λ的取值范圍是( )
A.λ>-2
B.λ>-3
C.λ>-4
D.λ>-5
【答案】分析:利用f(r)-f(q)>0,得出r2+λr-(q2+λq)=r2-q2+λr-λq=(r+q)(r-q)+λ(r-q),利用p<q<r得出qmin=2,rmin=3,可求λ的范圍.
解答:解:∵f(r)-f(q)>0,
r2+λr-(q2+λq)=r2-q2+λr-λq=(r+q)(r-q)+λ(r-q),
=(r-q)(r+q+λ)>0①又q<r,
∴(r+q+λ)>0,λ>-(r+q),
同理,(q-p)(q+p+λ)>0②,
又∵p<q,
∴(q+p+λ)>0,λ>-(p+q),
(r-p)(r+p+λ)>0③
又∵p<r,
∴(r+p+λ)>0,λ>-(r+q)
又∵p<q<r,
∴λ最大為-(p+q),
p、q、r三者均為正整數(shù),p<q<r,且p、q、r為△ABC的三邊,即需滿足p+q>r,
∴p的最小值應(yīng)為2(如P為1,q可為2,r可為3,1+2=3,不滿足p+q>r的條件),則q的最小值應(yīng)為3,
∴λ>-5
故選:D.
點(diǎn)評(píng):此題考查了二次函數(shù)的增減性(單調(diào)性),是一道難度中等的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=4x-3,當(dāng)
 
<x<
 
時(shí),函數(shù)圖象在第四象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知函數(shù)y=(m-3)x-4中,y值隨x的增加而減小,則m的取值范圍為
m<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、已知函數(shù)y=x+m與y=mx-1,當(dāng)x=3時(shí),y值相等,那么m的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知函數(shù)y=(2k+6)x-k是關(guān)于x的一次函數(shù),且y隨x的增大而減小,則這個(gè)函數(shù)的圖象經(jīng)過的象限是  
一、二、四

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=-3(x+4)2-1,當(dāng)x=
-4
-4
時(shí),函數(shù)取得最大值為
-1
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案