【題目】如圖,四邊形ABCD中, BA=BC, DA=DC,我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”, 其對(duì)角線AC、BD交于點(diǎn)M,請(qǐng)你猜想關(guān)于箏形的對(duì)角線的一條性質(zhì),并加以證明.
猜想:
證明:
【答案】箏形有一條對(duì)角線平分一組對(duì)角,即BD平分∠ABC且BD平分∠ADC;證明見解析
【解析】
利用SSS定理證明△ABD≌△CBD,可得∠ABD=∠CBD,∠ADB=∠CDB,從而可寫出關(guān)于箏形的對(duì)角線的一條性質(zhì),箏形有一條對(duì)角線平分一組對(duì)角.
解:箏形有一條對(duì)角線平分一組對(duì)角,即BD平分∠ABC且BD平分∠ADC
證明:∵在△ABD和△CBD中
BA=BC,DA=DC,BD=BD
∴△ABD≌△CBD(SSS)
∴∠ABD=∠CBD,∠ADB=∠CDB
即BD平分∠ABC,且BD平分∠ADC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一枚均勻的正方體骰子,六個(gè)面分別標(biāo)有數(shù)字:1,2,3,4,5,6.如果用小剛拋擲正方體骰子朝上的數(shù)字x,小強(qiáng)拋擲正方體骰子朝上的數(shù)字y來確定點(diǎn)P(x,y),那么他們各拋擲一次所確定的點(diǎn)P落在已知直線y=﹣2x+7圖象上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知,A(0, 4),B (t,0)分別在y軸,x軸上,連接AB,以AB為直角邊分別作等腰Rt△ABD和等腰Rt△ABC.直線BC交y軸于點(diǎn)E. 點(diǎn)G(-2,3)、H(-2,1)在第二象限內(nèi).
(1)當(dāng)t =-3時(shí),求點(diǎn)D的坐標(biāo).
(2)若點(diǎn)G、H位于直線AB的異側(cè),確定t的取值范圍.
(3)①當(dāng)t取何值時(shí),△ABE與△ACE的面積相等.
②在①的條件下,在x軸上是否存在點(diǎn)P,使△PCB為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,0)、B(0,3),對(duì)△AOB連續(xù)作旋轉(zhuǎn)變換可以依次得到三角形(1)、(2)、(3)、(4)、…
請(qǐng)你仔細(xì)觀察圖形,并解決以下問題:
(1)第(2)個(gè)三角形的直角頂點(diǎn)坐標(biāo)是 ;
(2)第(5)個(gè)三角形的直角頂點(diǎn)坐標(biāo)是 ;
(3)第(2018)個(gè)三角形的直角頂點(diǎn)坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小李從市場(chǎng)上買回一塊矩形鐵皮,他將此矩形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為1米的正方形后,剩下的部分剛好能圍成一個(gè)容積為35 m3的無蓋長(zhǎng)方體箱子,且此長(zhǎng)方體箱子的底面長(zhǎng)比寬多2m,現(xiàn)己知購買這種鐵皮每平方米需30元錢,問小李購回這張矩形鐵皮共花了多少元錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線與拋物線交于不同的兩點(diǎn)、 (點(diǎn)在點(diǎn)的左側(cè)).
(1)直接寫出的坐標(biāo) ; (用的代數(shù)式表示)
(2)設(shè)拋物線的頂點(diǎn)為,對(duì)稱軸與直線的交點(diǎn)為,連結(jié)、,若S△NDC=3×S△MDC,求拋物線的解析式;
(3)如圖②,在(2)的條件下,設(shè)該拋物線與軸交于、兩點(diǎn),點(diǎn)為直線下方拋物線上一動(dòng)點(diǎn),連接、,設(shè)直線交線段于點(diǎn),△MPQ的面積為,△MAQ的面積為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:四邊形ABCD中,對(duì)角線BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度數(shù)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com