【題目】某小區(qū)準(zhǔn)備新建個(gè)停車(chē)位,以解決小區(qū)停車(chē)難的問(wèn)題。已知新建個(gè)地上停車(chē)位和個(gè)地下停車(chē)位共需萬(wàn)元:新建個(gè)地上停車(chē)位和個(gè)地下停車(chē)位共需萬(wàn)元,

1)該小區(qū)新建個(gè)地上停車(chē)位和個(gè)地下停車(chē)位各需多少萬(wàn)元?

2)若該小區(qū)新建車(chē)位的投資金額超過(guò)萬(wàn)元而不超過(guò)萬(wàn)元,問(wèn)共有幾種建造方案?

3)對(duì)(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.

【答案】1)新建一個(gè)地上停車(chē)位需0.1萬(wàn)元,新建一個(gè)地下停車(chē)位需0.5萬(wàn)元;(2)一共2種建造方案;(3)當(dāng)?shù)厣辖?/span>39個(gè)車(chē)位地下建21個(gè)車(chē)位投資最少,金額為14.4萬(wàn)元.

【解析】

1)設(shè)新建一個(gè)地上停車(chē)位需x萬(wàn)元,新建一個(gè)地下停車(chē)位需y萬(wàn)元,根據(jù)等量關(guān)系可列出方程組,解出即可得出答案.
2)設(shè)新建地上停車(chē)位m個(gè),則地下停車(chē)位(60-m)個(gè),根據(jù)投資金額超過(guò)14萬(wàn)元而不超過(guò)15萬(wàn)元,可得出不等式組,解出即可得出答案.
3)將m=38m=39分別求得投資金額,然后比較大小即可得到答案.

解:(1)設(shè)新建一個(gè)地上停車(chē)位需萬(wàn)元,新建一個(gè)地下停車(chē)位需萬(wàn)元,

由題意得:,

解得,

故新建一個(gè)地上停車(chē)位需萬(wàn)元,新建一個(gè)地下停車(chē)位需萬(wàn)元.

2)設(shè)新建個(gè)地上停車(chē)位,

由題意得:

解得,因?yàn)?/span>為整數(shù),所以,

對(duì)應(yīng)的,故一共種建造方案。

3)當(dāng)時(shí),投資(萬(wàn)元),

當(dāng)時(shí),投資(萬(wàn)元),

故當(dāng)?shù)厣辖?/span>個(gè)車(chē)位地下建個(gè)車(chē)位投資最少,金額為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;

(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo);

(3)x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰△ABC中,ADBC交直線BC于點(diǎn)D,若AD=BC,則△ABC的頂角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在校運(yùn)會(huì)之前想了解九年級(jí)女生一分鐘仰臥起坐得分情況(滿(mǎn)分為7分),在九年級(jí)500名女生中隨機(jī)抽出60名女生進(jìn)行一次抽樣摸底測(cè)試所得數(shù)據(jù)如下表:

1)從表中看出所抽的學(xué)生所得的分?jǐn)?shù)數(shù)據(jù)的眾數(shù)是______

A.40% B.7 C.6.5 D.5%

2)請(qǐng)將下面統(tǒng)計(jì)圖補(bǔ)充完整.

3)根據(jù)上述抽查,請(qǐng)估計(jì)該?荚嚪?jǐn)?shù)不低于6分的人數(shù)會(huì)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ADBC于點(diǎn)D,BE平分ABC,若ABC=64°,AEB=70°

(1)求CAD的度數(shù);

(2)若點(diǎn)F為線段BC上的任意一點(diǎn),當(dāng)EFC為直角三角形時(shí),求BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OP1A1B1A1P2A2B2,A2P3A3B3,……,An-1PnAnBn都是正方形,對(duì)角線OA1,A1A2,A2A3,……An-1An都在y軸上(n≥1的整數(shù)),點(diǎn)P1x1y1),P2x2,y2),……,Pnxn,yn)在反比例函數(shù)y=x0)的圖象上,并已知B1-1,1.

1)求反比例函數(shù)y=的解析式;

2)求點(diǎn)P2P3的坐標(biāo);

3)由(1)、(2)的結(jié)果或規(guī)律試猜想并直接寫(xiě)出:PnBnO的面積為 ,點(diǎn)Pn的坐標(biāo)為______(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1的表達(dá)式為:y=-3x+3,且直線l1x軸交于點(diǎn)D,直線l2經(jīng)過(guò)點(diǎn)A,B,直線l1,l2交于點(diǎn)C

1)求點(diǎn)D的坐標(biāo);

2)求直線l2的解析表達(dá)式;

3)求ADC的面積;

4)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得ADPADC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=24,BC=12,點(diǎn)E沿BC邊從點(diǎn)B開(kāi)始向點(diǎn)C以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng);點(diǎn)F沿CD邊從點(diǎn)C開(kāi)始向點(diǎn)D以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),如果E、F同時(shí)出發(fā),用t(0≤t≤6)秒表示運(yùn)動(dòng)的時(shí)間,當(dāng)t為何值時(shí),以點(diǎn)E、C、F為頂點(diǎn)的三角形與△ACD相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1955年,印度數(shù)學(xué)家卡普耶卡()研究了對(duì)四位自然數(shù)的一種變換:任給出四位數(shù),用的四個(gè)數(shù)字由大到小重新排列成一個(gè)四位數(shù),再減去它的反序數(shù)(即將的四個(gè)數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運(yùn)算,比如0001,計(jì)算時(shí)按1計(jì)算),得出數(shù),然后繼續(xù)對(duì)重復(fù)上述變換,得數(shù),…,如此進(jìn)行下去,卡普耶卡發(fā)現(xiàn),無(wú)論是多大的四位數(shù),只要四個(gè)數(shù)字不全相同,最多進(jìn)行次上述變換,就會(huì)出現(xiàn)變換前后相同的四位數(shù),這個(gè)數(shù)稱(chēng)為變換的核.則四位數(shù)9631的變換的核為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案