【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)

1)若△CEF△ABC相似.

當(dāng)AC=BC=2時,AD的長為   ;

當(dāng)AC=3BC=4時,AD的長為   

2)當(dāng)點DAB的中點時,△CEF△ABC相似嗎?請說明理由.

【答案】解:(1。

2)當(dāng)點DAB的中點時,△CEF△ABC相似。理由如下:

如答圖3所示,連接CD,與EF交于點Q,

∵CDRt△ABC的中線,∴CD=DB=AB,∴∠DCB=∠B。

由折疊性質(zhì)可知,∠CQF=∠DQF=90°,

∴∠DCB+∠CFE=90°。

∵∠B+∠A=90°,∴∠CFE=∠A。

∵∠C=∠C,∴△CEF∽△CBA

【解析】

1)若△CEF△ABC相似.

當(dāng)AC=BC=2時,△ABC為等腰直角三角形,如答圖1所示,

此時DAB邊中點,AD=AC=。

當(dāng)AC=3,BC=4時,有兩種情況:

I)若CECF=34,如答圖2所示,

∵CECF=ACBC,∴EF∥BC。

由折疊性質(zhì)可知,CD⊥EF,

∴CD⊥AB,即此時CDAB邊上的高。

Rt△ABC中,AC=3,BC=4,∴BC=5。

∴cosA=。∴AD=ACcosA=3×=。

II)若CFCE=34,如答圖3所示.

∵△CEF∽△CAB∴∠CEF=∠B。

由折疊性質(zhì)可知,∠CEF+∠ECD=90°

∵∠A+∠B=90°,∴∠A=∠ECD∴AD=CD。

同理可得:∠B=∠FCD,CD=BD。∴AD=BD。

此時AD=AB=×5=

綜上所述,當(dāng)AC=3,BC=4時,AD的長為。

2)當(dāng)點DAB的中點時,△CEF△ABC相似.可以推出∠CFE=∠A∠C=∠C,從而可以證明兩個三角形相似。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=54°∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“上升數(shù)”是一個數(shù)中右邊數(shù)字比左邊數(shù)字大的自然數(shù)(如:34,568,2469等).任取一個兩位數(shù),是“上升數(shù)”的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司購進某種水果的成本為/千克,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來天的銷售價格(元/千克)與時間(天)之間的函數(shù)關(guān)系式為

,且其日銷售量(千克)與時間(天)的關(guān)系如下表:

時間

日銷售量千克

已知之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第天的日銷售量是多少?

問哪一天的銷售利潤最大?最大日銷售利潤為多少?

在實際銷售的前天中,公司決定每銷售千克水果就捐贈元利潤精準扶貧對象.現(xiàn)發(fā)現(xiàn):在前天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖a,P、Q是△ABC的邊BC上的兩點,且△APQ為等邊三角形,AB=AC,

1)求證:BP=CQ.

2)如圖a,若∠BAC=120,AP=3,求BC的長.

3)若∠BAC=120,沿直線BC向右平行移動△APQ得到△A′P′Q′(如圖b),A′Q′AC交于點M.當(dāng)點P移動到何處時,△AA′M≌△CQ′M?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點D在邊AB上.

(1)如圖1,當(dāng)點E在邊BC上時,求證DE=EB;

(2)如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點E在△ABC外部時,EHAB于點H,過點EGEAB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店計劃購進A、B兩種型號的電動自行車共30輛,其中A型電動自行車不少于20輛,A、B兩種型號電動自行車的進貨單價分別為2500元、3000元,售價分別為2800元、3500元,設(shè)該商店計劃購進A型電動自行車m輛,兩種型號的電動自行車全部銷售后可獲利潤y元.

1)求出ym之間的函數(shù)關(guān)系式;

2)該商店如何進貨才能獲得最大利潤?此時最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+b的圖象與反比例函數(shù)y=的圖象交于A(3,1),B(﹣,n)兩點.

(1)求該反比例函數(shù)的解析式;

(2)求n的值及該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△ABC沿EF對折,疊合后的圖形如圖所示.若∠A=60°,∠1=85°,則∠2的度數(shù)( )

A. 24°B. 25°C. 30°D. 35°

查看答案和解析>>

同步練習(xí)冊答案