【題目】為了出行方便,現(xiàn)在很多家庭都購買了小汽車.又由于能源緊張和環(huán)境保護(hù),石油的市場價格常常波動.為了在價格的波動中盡可能減少損失,常常有兩種加油方案.

方案一:每次加50元的油.方案二:每次加50升的油.

請同學(xué)們以2次加油為例(第一次油價為a/升,第二次油價為b/升,a0,b0ab),計算這兩種方案中,哪種加油方案更實惠便宜(平均單價小的便宜)?

【答案】方案一實惠便宜,理由見解析.

【解析】

首先根據(jù)單價=總價÷數(shù)量分別表示出2次加油的平均單價,然后對這兩次平均單價進(jìn)行減法運算即可.

解:方案一前后兩次加油的平均單價為:,

方案二前后兩次加油的平均單價為:(50a+50b÷50+50)=

,

a0,b0,

2a+b)>0

ab,

,

,

,

∴方案一實惠便宜.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列式子:

0×2+112……

1×3+122……

2×4+132……

3×5+142……

……

1)第個式子   ,第個式子   ;

2)請用含nn為正整數(shù))的式子表示上述的規(guī)律,并證明:

3)求值:(1+)(1+)(1+)(1+)…(1+).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年級共有300名學(xué)生,為了解該年級學(xué)生在,兩個體育項目上的達(dá)標(biāo)情況,進(jìn)行了抽樣調(diào)査.過程如下,請補充完整.

收集數(shù)據(jù)從該年級隨機抽取30名學(xué)生進(jìn)行測試,測試成績(百分制)如下:

項目 78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 95 58 54 63 67 82 74

項目 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75

整理、描述數(shù)據(jù)

項目的頻數(shù)分布表

分組

劃記

頻數(shù)

1

2

2

8

5

(說明:成績80分及以上為優(yōu)秀,6079分為基本達(dá)標(biāo),59分以下為不合格)

根據(jù)以上信息,回答下列問題:

1)補全統(tǒng)計圖、統(tǒng)計表;

2)在此次測試中,成績更好的項目是__________,理由是__________;

3)假設(shè)該年級學(xué)生都參加此次測試,估計項目和項目成績都是優(yōu)秀的人數(shù)最多為________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個口袋中有4個完全相同的小球,把它們分別標(biāo)號為1、2、3、4,隨機摸取一個小球然后放回,再隨機地摸取一個小球.
(1)采用樹狀圖法(或列表法)列出兩次摸取小球出現(xiàn)的所有可能結(jié)果,并回答摸取兩球出現(xiàn)的所以可能結(jié)果共有幾種;
(2)求兩次摸取的小球標(biāo)號相同的概率;
(3)求兩次摸取的小球標(biāo)號的和等于4的概率;
(4)求兩次摸取的小球標(biāo)號的和是2的倍數(shù)或3的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于點D,DE⊥AB交AB的延長線于點E,DF⊥AC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中,正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(十九),用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為23、4、6,且相鄰兩木條的夾角均可調(diào)整。若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲的距離之最大值為何?

(A) 5 (B) 6 (C) 7 (D) 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,三角形ABC的頂點坐標(biāo)分別為A(2,4),B(5,﹣1),C(01),把三角形ABC向右平移2個單位長度,再向下平移4個單位長度后得到三角形A'B'C'

1)畫出三角形ABC和平移后A′B′C′的圖形;

2)寫出三個頂點A'B',C'的坐標(biāo);

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+2180°,∠A=∠CAD平分∠BDF

(1)AEFC的位置關(guān)系如何?為什么?

(2)ADBC的位置關(guān)系如何?為什么?

(3)BC平分∠DBE?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線OA與直線BC相交于點A,且點B的坐標(biāo)為(5,﹣1),點C的坐標(biāo)為(3,1),直線OA的解析式為y3x

1)求直線BC的解析式;

2)求點A的坐標(biāo);

3)求OAC的面積.

查看答案和解析>>

同步練習(xí)冊答案