【題目】如圖,在三角形ABC中, D , E , F三點分別在AB , AC , BC上,過點D的直線與線段EF的交點為點M , 已知2∠1-∠2=150°,2∠ 2-∠1=30°.
(1)求證:DM∥AC;
(2)若DE∥BC , ∠C =50°,求∠3的度數(shù).
【答案】
(1)
證明:∵ 2∠1-∠2=150°,2∠2-∠1=30°,
∴ ∠1+∠2=180°.
∵ ∠1+∠DME=180°,
∴ ∠2=∠DME .
∴ DM∥AC .
(2)
解:∵ DM∥AC,
∴ ∠3=∠AED .
∵ DE∥BC ,
∴ ∠AED=∠C .
∴ ∠3=∠C .
∵ ∠C=50°,
∴ ∠3=50°.
【解析】(1) 已知 2∠1-∠2=150°,2∠2-∠1=30°,可得∠1+∠2=180°,再由∠1+∠DME=180°,可得∠2=∠DME , 根據(jù)內(nèi)錯角相等,兩直線平行即可得DM∥AC;
(2) 由(1)得DM∥AC , 根據(jù)兩直線平行,內(nèi)錯角相等可得∠3=∠AED ,再由DE∥BC ,可得∠AED=∠C ,所以∠3=∠C= 50°.
【考點精析】掌握平行線的判定與性質(zhì)是解答本題的根本,需要知道由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+bx+c經(jīng)過點B(-1,0)和點C(2,3).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)如果此拋物線上下平移后過點(-2,-1),請直接寫出平移的方向和平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
(1)解:解不等式①得:;
(2)解不等式②得:;
(3)把不等式①和②的解集在數(shù)軸上表示出來:
(4)所以,這個不等式組的解集是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場服裝部為了調(diào)動營業(yè)員的積極性,決定實行目標(biāo)管理.為了確定一個適當(dāng)?shù)脑落N售日標(biāo),服裝部統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:
銷售額/萬元 | 14 | 15 | 17 | 19 | 27 | 30 |
人數(shù) | 1 | 6 | 3 | 4 | 5 | 1 |
(1)分別求出所有營業(yè)員月銷售額的眾數(shù)、中位數(shù)和平均數(shù);
(2)如果想讓一半左右的營業(yè)員有信心達(dá)到銷售目標(biāo).月銷售目標(biāo)定為多少合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】232﹣1可以被10和20之間某兩個整數(shù)整除,則這兩個數(shù)是( )
A.17,15
B.17,16
C.15,16
D.13,14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,∠CAB的平分線分別交BD、BC于E、F,作BH⊥AF于點H,分別交AC、CD于點G、P,連結(jié)GE、GF.
(1)求證:△OAE≌△OBG.
(2)試問:四邊形BFGE是否為菱形?若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,□OABC的三個頂點O(0,0)、A(3,0) 、 B(4,2),則其第四個頂點是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com