如圖,一條拋物線與x軸相交于A、B兩點,其頂點P在折線C-D-E上移動,若點C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為(  )
A.1B.2C.3D.4

由圖知:當(dāng)點B的橫坐標(biāo)為1時,拋物線頂點取C(-1,4),設(shè)該拋物線的解析式為:y=a(x+1)2+4,代入點B坐標(biāo),得:
0=a(1+1)2+4,a=-1,
即:B點橫坐標(biāo)取最小值時,拋物線的解析式為:y=-(x+1)2+4.
當(dāng)A點橫坐標(biāo)取最大值時,拋物線頂點應(yīng)取E(3,1),則此時拋物線的解析式:y=-(x-3)2+1=-x2+6x-8=-(x-2)(x-4),即與x軸的交點為(2,0)或(4,0)(舍去),
∴點A的橫坐標(biāo)的最大值為2.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=
3
5
x-4分別交x、y軸于A、B兩點,O為坐標(biāo)原點.
(1)求B點的坐標(biāo);
(2)若D是OA中點,過A的直線l(3)把△AOB分成面積相等的兩部分,并交y軸于點C.
①求過A、C、D三點的拋物線的函數(shù)解析式;
②把①中的拋物線向上平移,設(shè)平移后的拋物線與x軸的兩個交點分別為M、N,試問過M、N、B三點的圓的面積是否存在最小值?若存在,求出圓的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c經(jīng)過點A(-1,0)、B(3,0)和C(0,-3),線段BC與拋物線的對稱軸相交于點P.M、N分別是線段OC和x軸上的動點,運動時保持∠MPN=90°不變.連結(jié)MN,設(shè)MC=m.
(1)求拋物線的函數(shù)解析式;
(2)用含m的代數(shù)式表示△PMN的面積S,并求S的最大值;
(3)以PM、PN為一組鄰邊作矩形PMDN,當(dāng)此矩形全部落在拋物線與x軸圍成的封閉區(qū)域內(nèi)(含邊界)時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△OAB是邊長為4+2
3
的等邊三角形,其中O是坐標(biāo)原點,頂點B在y軸的正半軸上.將△OAB折疊,使點A與OB邊上的點P重合,折痕與OA、AB的交點分別是E、F.如果PEx軸,
(1)求點P、E的坐標(biāo);
(2)如果拋物線y=-
1
2
x2+bx+c經(jīng)過點P、E,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,從O點射出炮彈落地點為D,彈道軌跡是拋物線,若擊中目標(biāo)C點,在A測C的仰角∠BAC=45°,在B測C的仰角∠ABC=30°,AB相距(1+
3
)km,OA=2km,AD=2km.
(1)求拋物線解析式;
(2)求拋物線對稱軸和炮彈運行時最高點距地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一大片空地上有一堵墻(線段AB),現(xiàn)有鐵欄桿40m,準(zhǔn)備充分利用這堵墻建造一個封閉的矩形花圃.
(1)如果墻足夠長,那么應(yīng)如何設(shè)計可使矩形花圃的面積最大?
(2)如果墻AB=8m,那么又要如何設(shè)計可使矩形花圃的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)y=x2+bx+c圖象與x軸交于A,B兩點(A在B的左邊),與y軸交于點C,頂點為M,△MAB為直角三角形,圖象的對稱軸為直線x=-2,點P是拋物線上位于A,C兩點之間的一個動點,則△PAC的面積的最大值為( 。
A.
27
4
B.
11
2
C.
27
8
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某科研所投資200萬元,成功地研制出一種市場需求量較大的汽配零件,并投入資金700萬元進行批量生產(chǎn).已知每個零件成本20元.通過市場銷售調(diào)查發(fā)現(xiàn):當(dāng)銷售單價定為50元時,年銷售量為20萬件;銷售單價每增加1元,年銷售量將減少1000件.設(shè)銷售單價為x元,年銷售量為y(萬件),年獲利為z(萬元)
(1)試寫出y與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍)
(2)試寫出z與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍)
(3)當(dāng)銷售單價定為多少時,年獲利最多?并求出這個年利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

春節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用20天時間,采用每天降低水位以減少捕撈成本的辦法,對水庫中某種鮮魚進行捕撈、銷售.九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第x天(1≤x≤20且x為整數(shù))的捕撈與銷售的相關(guān)信息如表:
鮮魚銷售單價(元/kg)20
單位捕撈成本(元/kg)5-
x
5
捕撈量(kg)950-10x
(1)在此期間該養(yǎng)殖場每天的捕撈量與前一天末的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當(dāng)天全部售出,求第x天的收入y(元)與x(天)之間的函數(shù)關(guān)系式?(當(dāng)天收入=日銷售額-日捕撈成本)
(3)試說明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案