【題目】已知:如圖,第一象限內(nèi)的點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C在y軸上,BC∥x軸,點(diǎn)A的坐標(biāo)為(2,4),且cot∠ACB=
求:
(1)反比例函數(shù)的解析式;
(2)點(diǎn)C的坐標(biāo);
(3)∠ABC的余弦值.
【答案】
(1)解:設(shè)反比例函數(shù)解析式為y= ,
將點(diǎn)A(2,4)代入,得:k=8,
∴反比例函數(shù)的解析式y(tǒng)=
(2)解:過點(diǎn)A作AE⊥x軸于點(diǎn)E,AE與BC交于點(diǎn)F,則CF=2,
∵cot∠ACB= = ,
∴AF=3,
∴EF=1,
∴點(diǎn)C的坐標(biāo)為(0,1)
(3)解:當(dāng)y=1時(shí),由1= 可得x=8,
∴點(diǎn)B的坐標(biāo)為(1,8),
∴BF=BC﹣CF=6,
∴AB= =3 ,
∴cos∠ABC= = =
【解析】(1)待定系數(shù)法求解可得;(2)作AE⊥x軸于點(diǎn)E,AE與BC交于點(diǎn)F,則CF=2,根據(jù)cot∠ACB= = 得AF=3,即可知EF,從而得出答案;(3)先求出點(diǎn)B的坐標(biāo).繼而由勾股定理得出AB的長,最后由三角函數(shù)可得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R. (I)當(dāng)a=3時(shí),求關(guān)于x的不等式f(x)≤6的解集;
(II)當(dāng)x∈R時(shí),f(x)≥a2﹣a﹣13,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c過點(diǎn)B(3,0),C(0,3),D為拋物線的頂點(diǎn).
(1)求拋物線的解析式以及頂點(diǎn)坐標(biāo);
(2)點(diǎn)C關(guān)于拋物線y=﹣x2+bx+c對稱軸的對稱點(diǎn)為E點(diǎn),聯(lián)結(jié)BC,BE,求∠CBE的正切值;
(3)點(diǎn)M是拋物線對稱軸上一點(diǎn),且△DMB和△BCE相似,求點(diǎn)M坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知向量 , , .
(1)求做:向量 分別在 , 方向上的分向量 , :(不要求寫作法,但要在圖中明確標(biāo)出向量 和 ).
(2)如果點(diǎn)A是線段OD的中點(diǎn),聯(lián)結(jié)AE、交線段OP于點(diǎn)Q,設(shè) = , = ,那么試用 , 表示向量 , (請直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,電線桿CD上的C處引拉線CE,CF固定電線桿,在離電線桿6米的B處安置測角儀(點(diǎn)B,E,D在同一直線上),在A處測得電線桿上C處的仰角為30°,已知測角儀的高AB=1.5米,BE=2.3米,求拉線CE的長,(精確到0.1米)參考數(shù)據(jù) ≈1.41, ≈1.73.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于非零向量 、 、 下列條件中,不能判定 與 是平行向量的是( )
A. ∥ , ∥
B. +3 = , =3
C. =﹣3
D.| |=3| |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC= ,點(diǎn)D在邊BC上(不與點(diǎn)B、C重合),點(diǎn)E在邊BC的延長線上,∠DAE=∠BAC,點(diǎn)F在線段AE上,∠ACF=∠B.設(shè)BD=x.
(1)若點(diǎn)F恰好是AE的中點(diǎn),求線段BD的長;
(2)若y= ,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)△ADE是以AD為腰的等腰三角形時(shí),求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】發(fā)現(xiàn)與探究:如圖,△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=45°,點(diǎn)B,C,E三點(diǎn)共線,且BC:CE=2:1,連接AE,BD.
(1)在不添加輔助線和字母的情況下,請?jiān)趫D中找出一對全等三角形(用“≌”表示),并加以證明;
(2)求tan∠BDC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com