【題目】我們知道有兩條邊相等的三角形叫做等腰三角形.類似的,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.
(1)請寫出一個你學(xué)過的四邊形中是等對邊四邊形的圖形的名稱.
(2)如圖1,在△ABC中,點D、E分別在AB、AC上,且CD、BE相交于點O,若∠A=60°,∠DCB=∠EBC= ∠A.請你寫出與∠A相等的角.
(3)我們易證圖中的四邊形BCED是等對邊四邊形.
(提示:如圖2,可證△BGO≌△CFO再證△BGD≌△CFE,可得到結(jié)論BD=CE.不需證明)
若在△ABC中,如果∠A是不等于60°的銳角,D、E分別在AB、AC上,且CD、BE相交于點O,∠DCB=∠EBC= ∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.
【答案】
(1)解:平行四邊形等(只要對邊相等即可)
(2)解:∵∠A=60°,∠DCB=∠EBC= ∠A,
∴∠OBC=∠OCB=30°,
∴∠BOD=∠EOC=∠OBC+∠OCB=60°,
∴與∠A相等的角是∠BOD,∠EOC
(3)解:結(jié)論:四邊形BCED是等對邊四邊形.理由如下:
如圖2中,作BG⊥CD于G,CF⊥BE于F.
∵∠DCB=∠EBC= ∠A,
∴OB=OC,
在△BGO和△CFO中,
,
∴△BGO≌△CFO,
∴BG=CF,
∵∠BOD=∠A,
∴∠A+∠DOE=180°,∠ADO+∠AEO=180°,
∵∠AEO+∠CEF=180°,∠ADO=∠BDG,
∴∠BDG=∠CEF,∵∠BGD=∠CFE,
∴△BGD≌△CFE,
∴BD=CE,
∴△BGD≌△CFE,
∴BD=CE.
∴四邊形BCED是等對邊四邊形
【解析】(1)依據(jù)等對邊四邊形的定義進行判斷即可;
(2)利用三角形的外角的性質(zhì),求出∠BOD即可解決問題;
(3)可證△BGO≌△CFO再證△BGD≌△CFE,可得到結(jié)論BD=CE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形的三邊長分別為①5,12,13; ②9,40,41; ③8,15,17; ④13,84,85. 其中能夠構(gòu)成直角三角形的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組的兩個數(shù)中,運算后結(jié)果相等的是( )
A.23和32
B.﹣53和(﹣5)3??
C.﹣|﹣5|和﹣(﹣5)
D.(﹣ )3和﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,I是△ABC的內(nèi)心,AI的延長線和△ABC的外接圓相交于點D,連接BI、BD、DC.下列說法中錯誤的一項是( )
A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合
B.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DI重合
C.∠CAD繞點A順時針旋轉(zhuǎn)一定能與∠DAB重合
D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如圖放置,使直角頂點C重合,若DE∥BC,則∠1的度數(shù)是( )
A.75°
B.105°
C.110°
D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA在x軸上,OB在y軸上,OA=8,AB=10,點C在邊OA上,AC=2,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)()的圖象經(jīng)過圓心P,則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)a1 , a2 , a3 , a4…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此類推,則a2017的值為( )
A.﹣1009
B.﹣1008
C.﹣2017
D.﹣2016
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麗君花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時,超過20盆部分的繡球花價格打8折.
(1)分別寫出兩種花卉的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;
(2)為了美化環(huán)境,花園小區(qū)計劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時,總費用最少,最少費用是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com