閱讀理解題:
解不等式
2ax
3
-
3
2
≥1

第一步:4ax-9≥6①
第二步:4ax≥15②
第三步:x≥
15
4a

問:(1)上述解題過程中的第一步叫做
 
,它的理論依據(jù)是
 

(2)上述解題過程中從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:
 

(3)錯誤的原因為
 
;
(4)本題正確的結論是什么?
分析:這是一個含有字母系數(shù)的不等式,仔細觀察
2ax
3
-
3
2
≥1
,通過去分母、去括號、移項并合并、再分情況討論,系數(shù)化為1,求得解集.
解答:解:(1)去分母,不等式的性質2;
(2)③;
(3)沒有確定a的符號,若a≤0,則③不成立;
(4)應分a>0,a<0,a=0三種情況.
當a>0時,x≥
15
4a
;
當a<0時,x≤
15
4a
;
當a=0時,無解.
故填空答案為:去分母,不等式的性質2;③;沒有確定a的符號,若a≤0,則③不成立.
點評:本題考查了不等式的性質:(1)不等式的兩邊同時加上或減去同一個數(shù)或整式不等號的方向不變;
(2)不等式的兩邊同時乘以或除以同一個正數(shù)不等號的方向不變;
(3)不等式的兩邊同時乘以或除以同一個負數(shù)不等號的方向改變.注意分三種情況討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解題:
我們知道一元二次方程是轉化為一元一次方程來解的,例如:解方程x2-2x=0,通過因式分解將方程化為x(x-2)=0,從而得到x=0或x-2=0兩個一元一次方程,通過解這兩個一元一次方程,求得原方程的解.又如:解方程:x2-2x-3=0,通過配方,將方程化為(x-1)2-4=0,(x-1+2)(x-1-2)=0,即:(x+1)(x-3)=0,從而得到x+1=0或x-3=0兩個一元一次方程,從而求得原方程的解.
請你仔細閱讀上述內容,利用上述轉化方法解下列一元二次不等式:
(1)2x(x-1)-3(x-1)<0;
(2)x2+6x+5>0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀理解題:
解不等式數(shù)學公式
第一步:4ax-9≥6①
第二步:4ax≥15②
第三步:數(shù)學公式
問:(1)上述解題過程中的第一步叫做______,它的理論依據(jù)是______;
(2)上述解題過程中從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:______;
(3)錯誤的原因為______;
(4)本題正確的結論是什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀理解題:
解不等式
2ax
3
-
3
2
≥1

第一步:4ax-9≥6①
第二步:4ax≥15②
第三步:x≥
15
4a

問:(1)上述解題過程中的第一步叫做______,它的理論依據(jù)是______;
(2)上述解題過程中從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:______;
(3)錯誤的原因為______;
(4)本題正確的結論是什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀理解題:
我們知道一元二次方程是轉化為一元一次方程來解的,例如:解方程x2-2x=0,通過因式分解將方程化為x(x-2)=0,從而得到x=0或x-2=0兩個一元一次方程,通過解這兩個一元一次方程,求得原方程的解.又如:解方程:x2-2x-3=0,通過配方,將方程化為(x-1)2-4=0,(x-1+2)(x-1-2)=0,即:(x+1)(x-3)=0,從而得到x+1=0或x-3=0兩個一元一次方程,從而求得原方程的解.
請你仔細閱讀上述內容,利用上述轉化方法解下列一元二次不等式:
(1)2x(x-1)-3(x-1)<0;
(2)x2+6x+5>0.

查看答案和解析>>

同步練習冊答案