【題目】閱讀理解:
我們知道:一條線段有兩個端點,線段和線段表示同一條線段. 若在直線上取了三個不同的點,則以它們?yōu)槎它c的線段共有 條;若取了四個不同的點,則共有線段 條;…;依此類推,取了個不同的點,共有線段條.(用含的代數(shù)式表示)
類比探究:
以一個銳角的頂點為端點向這個角的內(nèi)部引射線.
(1)若引出兩條射線,則所得圖形中共有 個銳角;
(2)若引出條射線,則所得圖形中共有 個銳角.(用含的代數(shù)式表示)
拓展應(yīng)用:
一條鐵路上共有8個火車站,若一列火車往返過程中必須?棵總車站,則鐵路局需為這條線路準備多少種車票?
【答案】; (1)6; (2) ; 拓展應(yīng)用: 鐵路局需為這條線路準備56種車票.
【解析】
對于“閱讀理解”,假如l上取三點A,B,C,則線段有AB,AC,BC,自己試著總結(jié)出規(guī)律,再根據(jù)線段的定義解答;
類比探究:根據(jù)角的定義解答;
拓展應(yīng)用:先計算出線段的條數(shù),再根據(jù)兩站之間需要兩種車票解答.
解答:
閱讀理三個不同的點,以它們?yōu)槎它c的線段共有3條,
若取了四個不同的點,則共有線段6條,…,
依此類推,取了n個不同的點,共有線段n(n1)2條;
類比探究:
(1)引出兩條射線,共有4條射線,銳角的個數(shù)為6;
(2)引出n條射線,共有n+2條射線,銳角的個數(shù): ;
拓展應(yīng)用:8個火車站共有線段條數(shù) =28,
需要車票的種數(shù):28×2=56.
故答案為:3,6, ;6; ;56.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD的兩條對角線相交于點O,過點A作AG⊥BD分別交BD、BC于點G、E.
(1)求證:BE2=EGEA;
(2)連接CG,若BE=CE,求證:∠ECG=∠EAC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,此時熱氣球C處所在位置到地面上點A的距離為400米.求地面上A,B兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,數(shù)軸被折成,圓的周長為4個單位長度,在圓的4等分點處標上數(shù)字0,1,2,3。先讓圓周上數(shù)字2所對應(yīng)的點與數(shù)軸上的數(shù)3所對應(yīng)的點重合,數(shù)軸固定,圓緊貼數(shù)軸沿著數(shù)軸的正方向滾動,那么數(shù)軸上的數(shù)2009將與圓周上的數(shù)字_________重合。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的對稱軸為直線x=2,頂點為點C,直線y=x+m與該二次函數(shù)的圖象交于點A,B兩點,其中點A的坐標為(5,8),點B在y軸上.
(1)求m的值和該二次函數(shù)的表達式.P為線段AB上一個動點(點P不與A,B兩點重合),過點P作x軸的垂線,與這個二次函數(shù)的圖象交于點E.
①設(shè)線段PE的長為h,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
②若直線AB與這個二次函數(shù)圖象的對稱軸的交點為D,求當四邊形DCEP是平行四邊形時點P的坐標.
(2)若點P(x,y)為直線AB上的一個動點,試探究:以PB為直徑的圓能否與坐標軸相切?如果能請求出點P的坐標,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),…,按此方式依次操作,則第6個正六邊形的邊長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣ x2+bx+c的圖象與x軸的正半軸相交于點A(2,0)和點B、與y軸相交于點C,它的頂點為M、對稱軸與x軸相交于點N.
(1)用b的代數(shù)式表示頂點M的坐標;
(2)當tan∠MAN=2時,求此二次函數(shù)的解析式及∠ACB的正切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果三角形的一個外角等于和它相鄰的內(nèi)角的4倍,等于與它不相鄰的一個內(nèi)角的2倍,則此三角形各內(nèi)角的度數(shù)是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com