【題目】某電器商城銷售兩種型號的電風(fēng)扇,進價分別為元、元,下表是近兩周的銷售情況:

銷售時段

銷售型號

銷售收入

種型號

種型號

第一周

第二周

1)求、兩種型號的電風(fēng)扇的銷售單價;

2)若商城準(zhǔn)備用不多于元的金額再采購這兩種型號的電風(fēng)扇共臺,求種型號的電風(fēng)扇最多能采購多少臺?

3)在(2)的條件下商城銷售完這臺電風(fēng)能否實現(xiàn)利潤超過元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

【答案】1、兩種型號的電風(fēng)扇的銷售單價分別為元和元;(2種型號的電風(fēng)扇最多能采購臺;(3)能,采購方案是:方案一:采購型號臺,型號臺;方案二:采購型號臺,型號臺.

【解析】

1)設(shè)、兩種型號的電風(fēng)扇單價分別為元和元,根據(jù)兩種型號第一周與第二周的銷售收入列出二元一次方程組進行求解;

2)設(shè)種型號的電風(fēng)扇應(yīng)采購臺,根據(jù)這兩種型號的電風(fēng)扇的采購金額不多于元列出一元一次不等式進行求解;

3)根據(jù)總利潤=(A臺售價-進價)×采購數(shù)量+(B臺售價-進價)×采購數(shù)量列出不等式,結(jié)合(2)與為正整數(shù)進行求解.

解:(1)設(shè)、兩種型號的電風(fēng)扇單價分別為元和元,

根據(jù)題意得,

解這個方程組得,

答:、兩種型號的電風(fēng)扇的銷售單價分別為元和元;

2)設(shè)種型號的電風(fēng)扇應(yīng)采購臺,

根據(jù)題意得,,

解得,,

為正整數(shù),

,

答:種型號的電風(fēng)扇最多能采購臺;

3)根據(jù)題意得,

解得:,

結(jié)合(2)有

為正整數(shù),

,,

∴采購方案是:

方案一:采購型號臺,型號臺;

方案二:采購型號臺,型號臺.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,ABAC,AD是△ABC的中線,AN為△ABC的外角∠CAM的平分線,CEAD,交AN于點E.求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB切⊙O于點B,BC∥OA,交⊙O于點C,若∠OAB=30°,BC=6,則劣弧BC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點PBC中點,兩邊PE、PF分別交AB、AC于點E、F,當(dāng)∠EPF△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形邊長為1的方格紙中,的頂點都在方格紙格點上.向左平移2格,再向上平移4格.

1)請在圖中畫出平移后的 ;

2)圖中AC的關(guān)系

3)再在圖中畫出的高;

4= ;

5)在圖中能使的格點的個數(shù)有 (異于C)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新定義:我們把只有一組對角是直角的四邊形叫做準(zhǔn)矩形.
(1)圖①、圖②均為3×3的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.線段AB、BC的端點均在格點上,在圖①、圖②中各畫一個準(zhǔn)矩形ABCD,要求:準(zhǔn)矩形ABCD的頂點D在格點上,且兩個準(zhǔn)矩形不全等.

(2)如圖③,正方形ABCD的邊長為4,準(zhǔn)矩形ABMN的頂點M、N分別在正方形ABCD的邊上.若準(zhǔn)矩形ABMN的一條對角線長為5,直接寫出此時該準(zhǔn)矩形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和( )

A.大于0
B.等于0
C.小于0
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得
(Ⅱ)解不等式②,得
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來
(Ⅳ)原不等式組的解集為

查看答案和解析>>

同步練習(xí)冊答案