【題目】如圖,在Rt△ABC中,∠C=90°,sinA= ,AB=10,點O為AC上一點,以OA為半徑作⊙O交AB于點D,BD的中垂線分別交BD,BC于點E,F(xiàn),連結DF.
(1)求證:DF為⊙O的切線;
(2)若AO=x,DF=y,求y與x之間的函數(shù)關系式.
【答案】
(1)證明:連接OD.
∵OA=OD,
∴∠OAD=∠ODA,
∵EF是BD的中垂線,
∴DF=BF.
∴∠FDB=∠B,
∵∠C=90°,
∴∠OAD+∠B=90°.
∴∠ODA+∠FDB=90°.
∴∠ODF=90°,
又∵OD為⊙O的半徑,
∴DF為⊙O的切線
(2)解:連接OF.
在Rt△ABC中,
∵∠C=90°,sinA= ,AB=10,
∴AC=6,BC=8,
∵AO=x,DF=y,
∴OC=6﹣x,CF=8﹣y,
在Rt△COF中,
OF2=(6﹣x)2+(8﹣x)2
在Rt△ODF中,
OF2=x2+y2
∴(6﹣x)2+(8﹣x)2=x2+y2,
∴y=﹣ x+ (0<x≤6)
【解析】(1)連接OD,由于EF是BD的中垂線,DF=BF.從而可知∠FDB=∠B,又因為OA=OD,所以∠OAD=∠ODA,從而可證明∠ODF=90°;(2)連接OF,由題意可知:AO=x,DF=y,OC=6﹣x,CF=8﹣y,然后在Rt△COF中與Rt△ODF中利用勾股定理分別求出OF,化簡原式即可求出答案.
【考點精析】利用線段垂直平分線的性質和解直角三角形對題目進行判斷即可得到答案,需要熟知垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學 來源: 題型:
【題目】化簡.
(1)( x- y)( x+ y) ( x2+ y2) ( x4+ y4)·…·(x16+ y16);
(2)(22+1)(24+1)(28+1)(216+1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某輪船由西向東航行,在 A 處測得小島 P 的方位是北偏東 75°,又繼續(xù)航行 8 海里后,在 B 處測得小島 P 的方位是北偏東 60°,則此時△ABP 的面積為______平方海里.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,CD為AB邊上的高
(1) 如圖1,求證:∠BAC=2∠BCD
(2) 如圖2,∠ACD的平分線CE交AB于E,過E作EF⊥BC于F,EF與CD交于點G.若ED=m,BD=n,請用含有m、n的代數(shù)式表示△EGC的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,
(1) 作出△ABC關于y軸對稱的△A1B1C1,并寫出△A1B1C1三個頂點的坐標:
A1 ,B1 ,C1 .
(2) 直接寫出△ABC的面積為 .
(3) 在x軸上畫點P,使△PAC的周長最小. (不寫作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過A點的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點B.
(1)求一次函數(shù)的解析式;
(2)判斷點C(4,-2)是否在該一次函數(shù)的圖象上,說明理由;
(3)若該一次函數(shù)的圖象與x軸交于D點,求△BOD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知A( ,y1),B(2,y2)為反比例函數(shù)y= 圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是( )
A.( ,0)
B.(1,0)
C.( ,0)
D.( ,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:E 是∠AOB 的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接 CD,且交 OE 于點F.
(1)求證:OD=OC;
(2)求證:OE 是 CD 的垂直平分線;
(3)若∠AOB=60°,請你探究 OE,EF 之間有什么數(shù)量關系?并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務的負責人,你認為到哪家商場購買比較合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com