精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在等腰RtABC中,∠C=90°,AC=8,FAB邊上的中點,點D,E分別在AC、BC邊上運動,且保持AD=CE,連接DE,DF,EF,在此運動過程中,下列結論:(1)DFE是等腰直角三角形;(2)DE長度的最小值為4;(3)四邊形CDFE的面積保持不變;(4)CDE面積的最大值是4.正確的結論是( 。

A. (1)(2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (2)(3)(4)

【答案】A

【解析】

①連接,根據已知條件由可得,從而可知,即可對結論(1)(3)作出判斷.②當時,的值最小,此時的值最小,的最小值為4,故結論(2)正確.③當面積最大時,此時的面積最小,此時SCDE=S四邊形CEFDSDEF=SAFCSDEF=8,可判斷結論(4).

解:(1)連接,

,,

邊上的中點,

,,

,

中,

),

,

,

,

是等腰直角三角形;

(1)正確;

(2),

∴當時,的值最小,此時的值最小,的最小值為4,故(2)正確;

(3),

,

∴四邊形的面積保持不變;

(3)正確;

(4)面積最大時,此時的面積最小,

,

,

,

此時SCDE=S四邊形CEFDSDEF=SAFCSDEF=,

(4)錯誤,

故答案為:A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,B=60°,將ABC沿對角線AC折疊,點B的對應點落在點E處,且點B,A,E在一條直線上,CEAD于點F,則圖中等邊三角形共有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若反比例函數y= (k≠0)的圖象經過P(﹣2,3),則該函數不經過的圖象的點是(
A.(3,﹣2)
B.(1,﹣6)
C.(﹣1,6)
D.(﹣1,﹣6)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,每個小正方形的邊長為一個單位長度已知ABC的頂點A(-2,5)、B(-4,1)、C(2,3),將ABC平移得到ABC,點A(a,b)對應點A′(a+3,b-4)

(1) 畫出ABC并寫出點B′、C的坐標

(2) 試求線段AB在整個平移的過程中在坐標平面上掃過的面積

(3) x軸上存在一點P,使得SABP=6,則點P的坐標是_____________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知一次函數的圖像與x軸、軸分別交于點A、B,且BC∥AO,梯形AOBC的面積為10

(1)求點A、B、C的坐標;

(2)求直線AC的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】手機微信推出了搶紅包游戲,它有多種玩法,其中一種為拼手氣紅包,用戶設定好總金額以及紅包個數后,可以生成不等金額的紅包.現有一用戶發(fā)了三個拼手氣紅包,總金額為3元,隨機被甲、乙、丙三人搶到.

(1)判斷下列事件中,哪些是確定事件,哪些是不確定事件?

①丙搶到金額為1元的紅包;

②乙搶到金額為4元的紅包

③甲、乙兩人搶到的紅包金額之和一定比丙搶到的紅包金額多;

(2)記金額最多、居中、最少的紅包分別為A,BC

①求出甲搶到紅包A的概率;

②若甲沒搶到紅包A,則乙能搶到紅包A的概率又是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點E為BC的中點,AB=4,∠BED=120°,則圖中陰影部分的面積之和是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,射線OA∥射線CB,∠C=∠OAB=100°.點D、E在線段CB上,且∠DOB=∠BOA,OE平分∠DOC

1)試說明AB∥OC的理由;

2)試求∠BOE的度數;

3)平移線段AB;

試問∠OBC∠ODC的值是否會發(fā)生變化?若不會,請求出這個比值;若會,請找出相應變化規(guī)律.

若在平移過程中存在某種情況使得∠OEC=∠OBA,試求此時∠OEC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一次實驗中,小強把一根彈簧的上端固定,在其下端懸掛物體.下面是他測得的彈簧的長度y與所掛物體的質量石的一組對應值:

所掛物體的質量x/kg

0

1

2

3

4

5

彈簧的長度y/cm

20

22

24

26

25

30

(1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?

(2)填空:

①當所掛的物體為3kg時,彈簧長是____.不掛重物時,彈簧長是____.

②當所掛物體的質量為8kg(在彈簧的彈性限度范圍內)時,彈簧長度是___.

查看答案和解析>>

同步練習冊答案