【題目】如圖,拋物線(xiàn)y=ax2+2ax+1與x軸僅有一個(gè)公共點(diǎn)A,經(jīng)過(guò)點(diǎn)A的直線(xiàn)交該拋物線(xiàn)于點(diǎn)B,交y軸于點(diǎn)C,且點(diǎn)C是線(xiàn)段AB的中點(diǎn).
(1)求這條拋物線(xiàn)對(duì)應(yīng)的函數(shù)解析式;
(2)求直線(xiàn)AB對(duì)應(yīng)的函數(shù)解析式.
【答案】(1)y=x2+2x+1;(2)y=2x+2.
【解析】
試題分析:(1)拋物線(xiàn)與x軸僅有1個(gè)交點(diǎn)可知△=0時(shí),即可得到4a2﹣4a=0,解方程即可求得a,即可得到拋物線(xiàn)解析式;(2)先求得A的坐標(biāo),已知點(diǎn)C是線(xiàn)段AB的中點(diǎn),可判定點(diǎn)A與點(diǎn)B的橫坐標(biāo)互為相反數(shù),再確定B點(diǎn)坐標(biāo),最后利用待定系數(shù)法求直線(xiàn)AB的解析式.
試題解析:
(1)∵拋物線(xiàn)y=ax2+2ax+1與x軸僅有一個(gè)公共點(diǎn)A,
∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,
∴拋物線(xiàn)解析式為y=x2+2x+1;
(2)∵y=(x+1)2,
∴頂點(diǎn)A的坐標(biāo)為(﹣1,0),
∵點(diǎn)C是線(xiàn)段AB的中點(diǎn),
即點(diǎn)A與點(diǎn)B關(guān)于C點(diǎn)對(duì)稱(chēng),
∴B點(diǎn)的橫坐標(biāo)為1,
當(dāng)x=1時(shí),y=x2+2x+1=1+2+1=4,則B(1,4),
設(shè)直線(xiàn)AB的解析式為y=kx+b,
把A(﹣1,0),B(1,4)代入得,解得,
∴直線(xiàn)AB的解析式為y=2x+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD中,AB=2,以點(diǎn)A為圓心,AB為半徑的圓交邊BC于點(diǎn)E,連接DE、AC、AE.
(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點(diǎn)E,求圖中陰影部分(扇形)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)A(﹣3,0)、B(5,0)、C(0,5)三點(diǎn),O為坐標(biāo)原點(diǎn)
(1)求此拋物線(xiàn)的解析式;
(2)若把拋物線(xiàn)y=ax2+bx+c(a≠0)向下平移個(gè)單位長(zhǎng)度,再向右平移n(n>0)個(gè)單位長(zhǎng)度得到新拋物線(xiàn),若新拋物線(xiàn)的頂點(diǎn)M在△ABC內(nèi),求n的取值范圍;
(3)設(shè)點(diǎn)P在y軸上,且滿(mǎn)足∠OPA+∠OCA=∠CBA,求CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式計(jì)算正確的是( )
A.2x4﹣x2=x2
B.(2x2)4=8x8
C.x2x3=x6
D.(﹣x)6÷(﹣x)2=x4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同一時(shí)刻,同一地區(qū),太陽(yáng)光下物體的高度與投影長(zhǎng)的比是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠ABC=60°,AB=8cm,D是AB的中點(diǎn).現(xiàn)將△BCD沿BA方向平移1cm,得到△EFG,F(xiàn)G交AC于H,F(xiàn)E交AC于M點(diǎn).
(1)求證:AG=GH;
(2)求四邊形GHME的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點(diǎn)E.
(1)求證:△ABD≌△EBD;
(2)過(guò)點(diǎn)E作EF∥DA,交BD于點(diǎn)F,連接AF.求證:四邊形AFED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題7分)如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過(guò)點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.
(1)判斷線(xiàn)段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;
(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請(qǐng)利用四邊形ADBE的面積證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(1+x)(2x2+mx+5)的計(jì)算結(jié)果中x2項(xiàng)的系數(shù)為﹣3,則m=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com