解:(1)點B的坐標(biāo)為(3,-1).
理由如下:作BD⊥x軸于D,
∴∠BOC=90°=∠BDC,
∴∠OAC+∠ACO=90°,
∵∠ACB=90°,AC=BC,
∴∠ACO+∠BCD=90°,
∴∠OAC=∠BCD,
在△AOC和△CDB中,
,
∴△AOC≌△CDB(AAS),
∴AO=CD,OC=BD,
∵A(0,-2),C(1,0),
∴AO=CD=2,OC=BD=1,
∴0D=3,
∵B在第四象限,
∴點B的坐標(biāo)為(3,-1);
(2)a+m+n=0.
證明:作BE⊥x軸于E,
∴∠BEC=∠AOC=90°,
∴∠1+∠2=90°,
∵∠ACB=90°,
∴∠1+∠3=90°,
∴∠2=∠3,
在△CEB和△AOC中,
,
∴△CEB≌△AOC(AAS),
∴AO=CE=a,BE=CO,
∵BE⊥x軸于E,
∴BE∥y軸,
∵BD⊥y軸于點D,EO⊥y軸于點O,
∴EO=BD=m,
∴BE=-n,
∴a+m=-n,
∴a+m+n=0.
分析:(1)過點B作BD⊥x軸于D,利用同角的余角相等求出∠OAC=∠BCD,然后利用“角角邊”證明△AOC和△CDB全等,根據(jù)全等三角形對應(yīng)邊相等可得AO=CD,OC=BD,然后求出OD,再根據(jù)點D在第四象限寫出點D的坐標(biāo)即可;
(2)過點B作BE⊥x軸于E,利用同角的余角相等求出∠2=∠3,再利用“角角邊”證明△CEB和△AOC全等,根據(jù)全等三角形對應(yīng)邊相等可得AO=CE,BE=CO,然后代入a、m、n整理即可得解.
點評:本題考查了全等三角形的判定與性質(zhì),坐標(biāo)與圖形的性質(zhì),等腰直角三角形的性質(zhì),同角的余角相等的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.