【題目】已知函數(shù)的頂點(diǎn)為點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
(2)求函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo);
(3)若函數(shù)的圖象在直線y=m的上方,求m的取值范圍.
【答案】(1)D(m, );(2)與x軸的交點(diǎn)坐標(biāo)(0,0),(2m,0);(3)﹣1<m<0.
【解析】試題分析:(1)通過配方把一般式化成頂點(diǎn)式,可求出頂點(diǎn)坐標(biāo);(2)令y=0,解方程x2-2mx=0即可;(3)①由頂點(diǎn)D在直線y=m的上方得-m2>m,結(jié)合y=m2-m的圖象可知﹣1<m<0;②解不等式x2-2mx>m,當(dāng)x2-2mx=m時(shí),拋物線和直線有唯一交點(diǎn),由△=0解得m1=0,m2=-1從而m的取值范圍為:﹣1<m<0.
解:(1)
∴D(m, ).
(2)令y=0,得.
解得,∴函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)(0,0),(2m,0).
(3)方法一:∵函數(shù)的圖象在直線y=m的上方,∴頂點(diǎn)D在直線y=m的上方,∴>m.
即<0.
由y= 的圖象可知,m的取值范圍為:﹣1<m<0.
方法二:∵函數(shù)的圖象在直線y=m的上方,∴>m,∴當(dāng)=m時(shí),拋物線和直線有唯一交點(diǎn),∴
=.
解得,∴m的取值范圍為:﹣1<m<0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)給定的條件,求一次函數(shù)的表達(dá)式.
(1)已知一次函數(shù)的圖象如圖所示,求此一次函數(shù)的表達(dá)式,并判斷點(diǎn)(6,5)是否在此函數(shù)圖象上;
(2)已知直線y=kx+b平行于直線y=3x+4,且過點(diǎn)(1,2),求此直線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為20元/千克.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價(jià)x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為y (元).
(1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍;
(2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少元?(參考關(guān)系:銷售額=售價(jià)×銷量,利潤(rùn)=銷售額﹣成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對(duì)角線AC,BD交于點(diǎn)O,過點(diǎn)O作EO⊥BD,交BA延長(zhǎng)線于點(diǎn)E,交AD于點(diǎn)F,若EF=OF,∠CBD=30°,BD=.求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)O是AB邊上一點(diǎn),以O為圓心作⊙O且經(jīng)過A,D兩點(diǎn),交AB于點(diǎn)E.
(1)求證:BC是⊙O的切線;
(2)AC=2,AB=6,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn),分別在邊,上,有下列條件:
①;②;③;④.其中,能使四邊形是平行四邊形的條件有( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一組相同規(guī)格的飯碗,測(cè)得一只碗高度為4.5cm,兩只飯碗整齊疊放在桌面上的高度為6.5cm,三只飯碗整齊疊放在桌面上的高度為8.5cm.根據(jù)以上信息回答下列問題:
(1)若飯碗數(shù)為個(gè),用含的代數(shù)式表示個(gè)飯碗整齊疊放在桌面上的高度;
(2)當(dāng)疊放飯碗數(shù)為9個(gè)時(shí),求這疊飯碗的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示,三個(gè)頂點(diǎn)的坐標(biāo)分別為:A(1,2)、B(2,3)、C(3,0).
(1)現(xiàn)將△ABC先向左平移5個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,得到△A1B1C1,請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出△A1B1C1.
(2)此時(shí)平移的距離是 ;
(3)在平面直角坐標(biāo)系中畫出△ABC關(guān)于點(diǎn)O成中心對(duì)稱的△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,點(diǎn)A、B、C是三個(gè)格點(diǎn)(網(wǎng)格線的交點(diǎn)叫做格點(diǎn))
(1)過點(diǎn)C畫AB的垂線,垂足為D;
(2)將點(diǎn)D沿BC翻折,得到點(diǎn)E,作直線CE;
(3)直線CE與直線AB的位置關(guān)系是 ;
(4)判斷:∠ACB ∠ACE.(填“>”、“<”或“=”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com