11、以正方形ABCD的BC邊為一邊作等邊三角形BCE,則∠AED=
30°或150°
分析:等邊△BCE可能在正方形內(nèi)如圖(1),也可在正方形外如圖(2),應(yīng)分情況討論.
解答:解:如圖(1)
∠ABE=90°+60°=150°,AB=BE,
∴∠AEB=15°=∠DEC,
∴∠AED=30°,

如圖(2)
BE=BA,∠ABE=30°,
∴∠BEA=75°=∠CED,
∴∠AED=360°-75°-75°-60°=150°.
故答案為30或150.
點(diǎn)評(píng):本題主要考查正方形的性質(zhì),解答本題的關(guān)鍵是進(jìn)行分類討論,此題難度不大,熟練掌握正方形的性質(zhì)即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:△AEC是以正方形ABCD的對(duì)角線為邊的等邊三角形,EF⊥AB,交AB延長(zhǎng)線于F,則∠BEF度數(shù)為
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,如果以正方形ABCD的對(duì)角線AC為邊作第二個(gè)正方形ACEF,再以AE為邊作第三個(gè)正方形AEGM,…已知正方形ABCD的面積S1=1,按上述方法所作的正方形的面積依次為S2,S3,…Sn(n為正整數(shù)),那么第8個(gè)正方形面積S8=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,以正方形ABCD的邊AB為直徑,在正方形內(nèi)部作半圓,圓心為O,DF切半圓于E,交A精英家教網(wǎng)B的延長(zhǎng)線于點(diǎn)F,BF=4.
(1)求證:△EFO∽△AFD,并求
FEFA
的值;
(2)求cos∠F的值;
(3)求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、以正方形ABCD的頂點(diǎn)D為原點(diǎn),以邊CD所在的直線為x軸,以邊AD所在的直線為y軸,建立平面直角坐標(biāo)系.若此正方形的邊長(zhǎng)為4,寫出A、B、C三點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,以正方形ABCD的對(duì)角線為邊作菱形AEFC,B在FE的延長(zhǎng)線上.
求證:AE、AF把∠BAC三等分.

查看答案和解析>>

同步練習(xí)冊(cè)答案