【題目】如圖,已知直線l1∥l2,且l3和l1、l2分別交于A、B兩點,點P在直線AB上.
(1)試說明∠1,∠2,∠3之間的關(guān)系式;(要求寫出推理過程)
(2)如果點P在A、B兩點之間(點P和A、B不重合)運動時,試探究∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?(只回答)
(3)如果點P在A、B兩點外側(cè)(點P和A、B不重合)運動時,試探究∠1,∠2,∠3之間的關(guān)系.(要求寫出推理過程)
【答案】(1)∠1+∠2=∠3,理由見解析;(2)同(1)可證∠1+∠2=∠3;(3)∠1-∠2=∠3或∠2-∠1=∠3,理由見解析
【解析】試題分析:(1)過點P作l1的平行線,根據(jù)平行線的性質(zhì)進行解題;(2)(3)都是同樣的道理.
試題解析:(1)∠1+∠2=∠3;
理由:過點P作l1的平行線,
∵l1∥l2,
∴l(xiāng)1∥l2∥PQ,
∴∠1=∠4,∠2=∠5,(兩直線平行,內(nèi)錯角相等)
∵∠4+∠5=∠3,
∴∠1+∠2=∠3;
(2)∠1+∠2=∠3;
理由:過點P作l1的平行線,
∵l1∥l2,
∴l(xiāng)1∥l2∥PQ,
∴∠1=∠4,∠2=∠5,(兩直線平行,內(nèi)錯角相等)
∵∠4+∠5=∠3,
∴∠1+∠2=∠3;
(3)∠1-∠2=∠3或∠2-∠1=∠3,
理由:當點P在下側(cè)時,過點P作l1的平行線PQ,
∵l1∥l2,
∴l(xiāng)1∥l2∥PQ,
∴∠2=∠4,∠1=∠3+∠4,(兩直線平行,內(nèi)錯角相等)
∴∠1-∠2=∠3;
當點P在上側(cè)時,同理可得:∠2-∠1=∠3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某住房小區(qū)的建設(shè)中,為了提高業(yè)主的宜居環(huán)境,小區(qū)準備在一個長為(4a+3b)米,寬為(2a+3b)米的長方形草坪上修建兩條寬為b米的通道.
(1)通道的面積是多少平方米?
(2)剩余草坪的面積是多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx-4(k≠0)的圖象與y軸交于點A,與反比例函數(shù)y=(x>0)的圖象交于點B(6,b).
(1)b=__________;k=__________.
(2)點C是直線AB上的動點(與點A,B不重合),過點C且平行于y軸的直線l交這個反比例函數(shù)的圖象于點D,當點C的橫坐標為3時,得△OCD,現(xiàn)將△OCD沿射線AB方向平移一定的距離(如圖),得到△O′C′D′,若點O的對應(yīng)點O′落在該反比例函數(shù)圖象上,求點O′,D′的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(慶陽中考)現(xiàn)在的青少年由于沉迷電視、手機、網(wǎng)絡(luò)游戲等,視力日漸減退,某市為了了解學(xué)生的視力變化情況,從全市九年級隨機抽取了1 500名學(xué)生,統(tǒng)計了每個人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計圖,并對視力下降的主要因素進行調(diào)查,制成扇形統(tǒng)計圖.
解答下列問題:
(1)圖中D所在扇形的圓心角度數(shù)為______;
(2)若2016年全市共有30 000名九年級學(xué)生,請你估計視力在4.9以下的學(xué)生約有多少名?
(3)根據(jù)扇形統(tǒng)計圖信息,你覺得中學(xué)生應(yīng)該如何保護視力?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)前夕,小東的父母準備購買若干個粽子和咸鴨蛋(每個粽子的價格相同,每個咸鴨蛋的價格相同).已知粽子的價格比咸鴨蛋的價格貴1.8元,花30元購買粽子的個數(shù)與花12元購買咸鴨蛋的個數(shù)相同,求粽子與咸鴨蛋的價格各多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學(xué)式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= (等量代換)
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補)
∵∠CAB=70° ,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,平面直角坐標系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰Rt△ABC,∠CAB=90°,AB=AC.
(1)求C點坐標;
(2)如圖②過C點作CD⊥X軸于D,連接AD,求∠ADC的度數(shù);
(3)如圖③在(1)中,點A在Y軸上運動,以O(shè)A為直角邊作等腰Rt△OAE,連接EC,交Y軸于F,試問A點在運動過程中S△AOB:S△AEF的值是否會發(fā)生變化?如果沒有變化,請直接寫出它們的比值 (不需要解答過程或說明理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com