如圖MB∥DC,∠MAD=∠DCN,可推出AD∥BN;請按下面的推理過程,據(jù)圖填空.
解:∵M(jìn)B∥DC(________)
∴∠B=∠DCN(________)
∵∠MAD=∠DCN(________)
∴∠B=∠MAD(________)
則AD∥BN(________)

已知    兩直線平行,同位角相等    已知    等量代換    同位角相等,兩直線平行
分析:要證AD∥BN,根據(jù)平行線的判定定理,只需證∠B=∠MAD,而已知MB∥DC,可推得∠B=∠DCN,已知給出了∠MAD=∠DCN,根據(jù)等量代換,可證得∠B=∠MAD.
解答:∵M(jìn)B∥DC(已知),
∴∠B=∠DCN(兩直線平行,同位角相等),
∵∠MAD=∠DCN(已知),
∴∠B=∠MAD(等量代換),
則AD∥BN(同位角相等,兩直線平行).
點(diǎn)評:本題給出推理過程,要求寫出每一步的根據(jù),降低了題目的難度,但為以后的規(guī)范推理和證明奠定了基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,⊙O交x軸于A、B兩點(diǎn),直線FA⊥x軸于點(diǎn)A,點(diǎn)D在FA上,且DO平行于⊙O的弦MB,連DM并延長交x軸于點(diǎn)C.
(1)判斷直線DC與⊙O的位置關(guān)系,并給出證明;
(2)設(shè)點(diǎn)D的坐標(biāo)為(-2,4),①求MC的長;②若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)D勻速運(yùn)動(dòng),速度是每秒1個(gè)單位長;同時(shí)點(diǎn)Q從點(diǎn)D出發(fā)向點(diǎn)C勻速運(yùn)動(dòng),速度是每秒2個(gè)單位長;其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)運(yùn)動(dòng)即結(jié)束.連接PQ交OD于點(diǎn)H,當(dāng)△PDH為直角三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、如圖MB∥DC,∠MAD=∠DCN,可推出AD∥BN;請按下面的推理過程,據(jù)圖填空.
解:∵M(jìn)B∥DC(
已知

∴∠B=∠DCN(
兩直線平行,同位角相等

∵∠MAD=∠DCN(
已知

∴∠B=∠MAD(
等量代換

則AD∥BN(
同位角相等,兩直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•裕華區(qū)二模)如圖①,將兩個(gè)等腰直角三角形疊放在一起,使上面三角板的一個(gè)銳角頂點(diǎn)與下面三角板的直角頂點(diǎn)重合,并將上面的三角板繞著這個(gè)頂點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)下面三角板的斜邊被分成三條線段時(shí),我們來研究這三條線段之間的關(guān)系.
(1)實(shí)驗(yàn)與操作:
如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時(shí),它的斜邊恰好旋轉(zhuǎn)到CN的位置,請?jiān)诰W(wǎng)格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個(gè)正方形的面積之間的關(guān)系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點(diǎn),∠MCN=45°,作DA⊥AB于點(diǎn)A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點(diǎn)A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
(3)拓廣與運(yùn)用:
如圖④,已知線段AB上任意一點(diǎn)M(AM<MB),是否總能在線段MB上找到一點(diǎn)N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請?jiān)趫D④中畫出點(diǎn)N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:重慶市月考題 題型:解答題

如圖MB∥DC,∠MAD=∠DCN,可推出AD∥BN;請按下面的推理過程,據(jù)圖填空。
解:∵M(jìn)B∥DC(          )
       ∴∠B=∠DCN (            )
        ∵ ∠MAD=∠DCN (              )
         ∴∠B=∠MAD (            )
         則AD∥BN(               )

查看答案和解析>>

同步練習(xí)冊答案