【題目】學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問題用符號(hào)語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)______,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若______,則△ABC≌△DEF.
【答案】(1)根據(jù)直角三角形全等的方法“HL”證明;(2)證明見解析;(3)作圖見解析;(4)∠B≥∠A
【解析】試題分析:(1)根據(jù)直角三角形全等的方法“HL”證明;
(2)過點(diǎn)C作CG⊥AB交AB的延長線于G,過點(diǎn)F作FH⊥DE交DE的延長線于H,根據(jù)等角的補(bǔ)角相等求出∠CBG=∠FEH,再利用“角角邊”證明△CBG和△FEH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CG=FH,再利用“HL”證明Rt△ACG和Rt△DFH全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠A=∠D,然后利用“角角邊”證明△ABC和△DEF全等;
(3)以點(diǎn)C為圓心,以AC長為半徑畫弧,與AB相交于點(diǎn)D,E與B重合,F與C重合,得到△DEF與△ABC不全等;
(4)根據(jù)三種情況結(jié)論,∠B不小于∠A即可.
(1)解:HL;
(2)證明:如圖,過點(diǎn)C作CG⊥AB交AB的延長線于G,過點(diǎn)F作FH⊥DE交DE的延長線于H,
∵∠ABC=∠DEF,且∠ABC、∠DEF都是鈍角,
∴180°﹣∠ABC=180°﹣∠DEF,
即∠CBG=∠FEH,
在△CBG和△FEH中,
,
∴△CBG≌△FEH(AAS),
∴CG=FH,
在Rt△ACG和Rt△DFH中,
,
∴Rt△ACG≌Rt△DFH(HL),
∴∠A=∠D,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(AAS);
(3)解:如圖,△DEF和△ABC不全等;
(4)解:若∠B≥∠A,則△ABC≌△DEF.
故答案為:(1)HL;(4)∠B≥∠A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=∠C,與△ABC全等的三角形有一個(gè)角是100°,那么在△ABC中與這100°角對(duì)應(yīng)相等的角是( )
A.∠A
B.∠B
C.∠C
D.∠B或∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一件衣服225元,連續(xù)兩次降價(jià)x%后售價(jià)為144元,則x=( )
A.0.2B.2C.8D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年汕頭市龍湖區(qū)的GDP總量約為389億元,其中389億用科學(xué)記數(shù)法表示為( )
A. 3.89×1011B. 0.389×1011C. 3.89×1010D. 38.9×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ΔABC中,∠BAC=90°,AB=AC,點(diǎn)D在 BC上,且BD=BA,點(diǎn)E在BC的延長線上,且CE=CA,
(1)試求∠DAE的度數(shù).
(2)如果把第(1)題中“AB=AC”的條件舍去,其余條件不變,那么∠DAE的度數(shù)會(huì)改變嗎?
(3)如果把第(1)題中“∠BAC=90°”的條件改為“∠BAC>90°”,其余條件不變,那么∠DAE與∠BAC有怎樣的大小關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是 ( )
A. 等腰三角形的高、中線、角平分線互相重合
B. 三角形兩邊的垂直平分線的交點(diǎn)到三個(gè)頂點(diǎn)距離相等
C. 等腰三角形的兩個(gè)底角相等
D. 等腰三角形頂角的外角是底角的二倍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解正確的是( 。
A.x3﹣x=x(x2﹣1)B.x2+y2=(x+y)(x﹣y)
C.(a+4)(a﹣4)=a2﹣16D.m2+4m+4=(m+2)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com