【題目】如圖,在3×3的正方形網(wǎng)格中標(biāo)出了∠1和∠2。則∠1+∠2=。
【答案】45°
【解析】解 :連接AC,BC .
根據(jù)勾股定理,AC=BC= ;AB=
∵()2+()2=()2 ,
∴△ABC是等腰直角三角形,
∴∠ACB=90,∠CAB=45.
∵AD∥CF,AD=CF,
∴四邊形ADFC是平行四邊形,
∴AC∥DF,
∴∠2=∠DAC;
在Rt△ABD中,
∠1+∠DAB=90;
又∵∠DAB=∠DAC+∠CAB,
∴∠1+∠CAB+∠DAC=90 ,
∴∠1+∠DAC=45 ,
∴∠1+∠2=∠1+∠DAC=45.
故答案為:45.
連接AC,BC ;利用方格紙的特點(diǎn),根據(jù)勾股定理得出AC,BC,AB的長(zhǎng), 然后根據(jù)勾股定理的逆定理判斷出 △ABC是等腰直角三角形,從而得出 ∠ACB=90,∠CAB=45.根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形得出 四邊形ADFC是平行四邊形,根據(jù)平行四邊形的對(duì)邊平行得出AC∥DF,根據(jù)二直線平行同位角相等得出∠2=∠DAC;根據(jù)直角三角形兩銳角互余得出∠1+∠DAB=90;,根據(jù)角的和差及等量代換得出∠1+∠2=∠1+∠DAC=45.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,已知AB=2,BC=4,對(duì)角線AC的垂直平分線分別交AD、AC于點(diǎn)E、O,連接CE,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以A、B為圓心,大于AB的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)M、N;②作直線MN交AC于點(diǎn)D,連接BD.若CD=CB,∠A=35°,則∠C等于( )
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x1 , x2 , x3 , x4 , x5 , x6 , x7是自然數(shù),且x1<x2<x3<x4<x5<x6<x7 , x1+x2=x3 , x2+x3=x4 , x3+x4=x5 , x4+x5=x6 , x5+x6=x7 , 又x1+x2+x3+x4+x5+x6+x7=2010,那么x1+x2+x3的值最大是。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店以40元/千克的進(jìn)價(jià)購進(jìn)一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量 (千克)與銷售價(jià) (元/千克)成一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求與之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍);
(2)若該商店銷售這批茶葉的成本不超過2800元,則它的最低銷售價(jià)應(yīng)定為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com